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Abstract

We show that the impact of supply on consumer prices is state-dependent. First, we

let the data determine two inflation regimes and find that they are characterized by

high and low inflation volatility. We then identify supply shocks using instrumental

variables based on outliers in the producer price series. Such shocks exhibit a

more substantial and more persistent effect on downstream prices during periods

of elevated inflation volatility compared to phases of more stable consumer price

growth. Exogenously differentiating regimes by the level of inflation or the shock

size does not reveal state dependency. The evidence supports a model in which

producers optimally invest in price flexibility. This model predicts that stricter

inflation targeting lowers inflation volatility in two ways: it reduces price flexibility

and, consequently, the pass-through of all shocks to inflation on top of the standard

channel that affects demand.
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1 Introduction

Policymakers have, particularly during times of rising inflation, voiced the suspicion that

the reaction of inflation to external shocks is not stable over time but depends on the

level or volatility of inflation itself.1 Such changing dynamics would be particularly sig-

nificant for central banking, impacting inflation forecasts and the expected outcomes of

monetary policy actions. Specifically, inflation projections often hinge on assumptions

regarding the speed and extent to which changes in producer prices are transmitted to

consumer prices. These considerations are crucial when central banks aim to contain price

pressures generated by supply shocks.2 Relying on theory for this question is difficult, as

alternative models of nominal rigidities, such as menu costs or Calvo pricing, yield differ-

ent predictions for the pass-through of supply shocks to consumer prices. Consequently,

identifying changing inflation dynamics also informs us about the validity of certain model

assumptions.

We investigate this issue empirically by analyzing whether and when inflation dynam-

ics undergo general changes. Using US data, we uncover two regimes by estimating a

Markov-switching process based on inflation dynamics. Crucially, we do not restrict the

regimes to depend on some exogenous indicator, such as an inflation threshold, but let the

inflation process itself endogenously determine them. It turns out that inflation volatility

(quick changes in inflation rates) plays a more significant role in determining the regimes

than its level. More precisely, if annualized monthly inflation changes by more than 5.2

pp. (as in April, May, and July 2022), the economy is likely to be in a high volatility

regime.3

In a second step, we investigate state-dependent causal effects of a shock to producer

prices—provided by the the Bureau of Labor Statistics—on downstream price growth.

Starting in 1948, we estimate how supply shocks to the crude material PPI dynamically

affect consumer prices. We also investigate the effects on intermediate stages of the pro-

duction process. We rely on PPI data as we are interested in more broadly defined supply

shocks instead of price movements of a single input factor, which generalizes the results.

Given that, e.g., crude materials display a much larger variance compared to consumer

prices, PPI price processes are noisier. We, therefore, use movements in the crude-material

PPI series that exceed normal fluctuations in input prices and move material prices and

production in different directions as instruments for supply shocks.

1Philip Lane, Member of the Executive Board of the ECB, writes on November 25, 2022: ”Our
corporate contacts started [towards the end of 2021] expressing more concern about the persistence
of input cost pressures, raising their price expectations for 2022 (also in view of rising energy prices).
[. . . ] Since the beginning of this year, many contacts also told us that prices would be increased more
frequently.” (Lane, 2022) More frequent price changes would alter the nature of the inflation process
profoundly, as regards, e.g., the strength and speed of cost pass-through to inflation.

2See Sinn (2021) for an early warning of the 2021/22 surge in inflation based on rising producer prices
and the implications for monetary policy.

3Here and the following, we use the words state and regime interchangeably.
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Figure 1: Escalation clauses. Index for Google searches of ‘Price escalation clause’ (left
axis) and monthly change in annualized s.a. CPI inflation rate in percentage points (right
scale).

Our results show that in periods of high inflation volatility, downstream prices, includ-

ing the consumer price index (CPI), react much more strongly to cost shocks on impact

and in subsequent months. In this regime, prices are arguably more flexible and, hence,

react more promptly to shocks. We validate our results for general supply shocks by esti-

mating the responses to a specific one, i.e., oil-supply shocks as identified by Baumeister

and Hamilton (2019). Again, the CPI exhibits a swifter and more pronounced reaction

in the high-volatility state.4

To emphasize the critical role of inflation volatility in determining regimes, we explore

whether similar state dependencies emerge when departing from the endogenous determi-

nation of regimes via the Markov-switching model. Our long sample—879 months—allows

us to disentangle periods of large shocks, high inflation, and high inflation volatility. These

episodes are correlated, but not identical and are of different natures. Specifically, we re-

peat our analysis but condition regimes exogenously on the level of CPI inflation or the

size of the shocks. Both separations fail to generate a state dependency that comes close

to the one induced by inflation volatility.

Our findings can be explained by firms’ quicker price adjustments when facing higher

price volatility in their sales markets. This explanation is supported by anecdotal evi-

dence from the 2021/22 surge in inflation. Figure 1 depicts Google searches for the term

‘Price escalation clause’ alongside the change in the CPI inflation rate. If agreed upon in

contracts between seller and buyer, these clauses automatically adjust sales prices based

on changes in the seller’s input costs.5 That is, widespread use of these clauses implies

4Our findings square well with the observation in Borio et al. (2021) that ‘salient,’ i.e., large and
positive, sectoral price movements displayed a lower pass-through to core PCE inflation during the great
moderation, compared to previous periods.

5The use of price escalation clauses is not just a recent phenomenon in the US; articles dating back
to the 1940s already mention these clauses. For example, Mack (1946) describes different variations and
provides advice for buyers facing escalation clauses.
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a much faster price reaction to upstream cost changes, significantly altering inflation dy-

namics. Interest in this kind of clause is, as visible in the figure, correlated to the change

in the inflation rate, peaking in the spring of 2021. This coincided with a swift global rise

in input prices due to several factors, among them strained global supply chains. Survey

evidence corroborates this observation, as 34% of sampled German firms in the Bundes-

bank Online Panel reported using price escalation clauses from 2021 onward, compared

to only 17% before 2021.

Regarding economic theory, our results, therefore, speak in favor of models in which

prices react quicker to shocks in the face of higher inflation volatility. We propose a

model based on Devereux (2006) in which price setters can invest in the flexibility of

their prices.6 The crucial difference to other models of state-dependent pricing, such as

menu-cost models, is the assumption that firms have an influence on price-setting costs

if, in anticipation, they take adequate measures, such as using price-escalation clauses in

new contracts. In the presence of strategic complementarities in price setting, the payoff

of being able to react quickly to new developments is higher in times of elevated inflation

volatility. This increased incentive to invest in price flexibility explains our finding of

a more substantial pass-through of cost shocks during periods of volatile inflation. The

model predicts a ‘double dividend’ to inflation targeting in terms of reducing inflation

volatility, as it leads to a lower pass-through of shocks to inflation through the traditional

direct channel of altering demand, but also indirectly via reducing optimal price flexi-

bility.7 In contrast, monetary policy that is more accommodating in the face of supply

shocks tends to increase price flexibility.

In a dynamic extension of the model, we follow Kimura and Kurozumi (2010) and allow

firms to choose an optimal price-setting frequency, based on overall volatility and price-

setting costs. The predicted inflation responses to supply shocks in high and low-volatility

regimes are reasonably close to our empirical findings. In line with the predictions of the

analytical model, we find that stricter inflation targeting dampens the inflation response

to cost-push shocks via an endogenous reduction of the price-setting frequency, on top

of the standard demand channel. This effect is particularly strong for the high-volatility

case. We also compare our empirical results to predictions of prominent alternative pricing

models. In menu-cost models, as developed by, e.g., Golosov and Lucas (2007), the shape

of CPI responses depends strongly on the shock size, which we do not find in our data for

cost-push shocks. Furthermore, standard Calvo price setting would not predict any state

dependency at all.

6We build our theoretical explanation on Devereux (2006) since his model setup captures the essential
determinants for a firm’s decision to invest in price flexibility in the most parsimonious way. Moreover,
it represents a straightforward implementation of price-escalation clauses in a theoretical framework.
Alternatively, but in a very similar spirit, observation costs in a menu cost model as in Álvarez et al.
(2018) would also predict that higher volatility leads to more frequent price reviews and, hence, a higher
cost pass-through. Rational-inattention models work in a similar way (Mackowiak and Wiederholt, 2009).

7See also Kimura and Kurozumi (2010) as well as Paciello and Wiederholt (2014) for a related
theoretical mechanism in a context of rational inattention.
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Despite the important implications, surprisingly little research has focused on the

pass-through of shocks to consumer prices in different inflation regimes until recently.

Given the policy relevance of this question, most existing research was conducted in pol-

icy institutions. By using Granger-Causality tests, Weinhagen (2002, 2016) demonstrates

that upstream changes in prices explain price changes at each stage of production in the

BLS PPI data, while more downstream price changes do not Granger-cause price changes.

Bobeica et al. (2020, 2021) concentrate on the pass-through of labor costs to output prices,

considering two regimes that depend on whether the level and volatility of inflation are

above or below their historical means. Their findings, based on a Cholesky decomposi-

tion to identify labor cost shocks, indicate a quicker and more substantial pass-through

in the high-inflation regime. Similarly, the Bank for International Settlements (2022) in-

vestigates the pass-through of relative price changes, oil price shocks, and exchange-rate

movements into consumer prices, finding them to be dampened in periods of inflation

below 5% (see also Borio et al., 2021, 2023). De Santis and Tornese (2023) find a stronger

transmission of energy supply shocks on consumer prices in high-inflation regimes, too,

while Ascari and Haber (2022) estimate more substantial price effects of monetary policy

shocks, as identified by Romer and Romer (2004), in high-inflation regimes and for large

shocks. Using micro data, Vavra (2014) shows that price changes become more dispersed

during recessions and that this dispersion is high when more products are changing prices.

Our model aligns with these observations, as recessions typically feature higher volatility

and higher volatility increases the share of firms that are able to change prices.8

Our approach differs from the above studies in that we analyze the effects of gen-

eral supply shocks, derived by a novel identification scheme, on prices in later stages of

production. Importantly, when identifying different inflation regimes, we do not impose

a threshold of inflation or its volatility but let the inflation process itself determine the

regimes. By doing so, we uncover the significance of inflation volatility in determining

the regimes, a factor that has not been considered so far.9 Using a very long time series

allows us to disentangle the effects of high inflation vs. high inflation volatility. This is

not an easy task, as, e.g., inflation surges are generally not one-time spikes but lead to

a prolonged period of inflation movements, see Blanco et al. (2025). Our sample, how-

ever, features periods of high volatility during times of higher and lower inflation levels.

Moreover, in our sample, some large shocks trigger high-volatility phases, others do not.

8Berger and Vavra (2019) also find evidence for time-varying responsiveness of prices to shocks. Vavra
(2014) favors a theoretical explanation based on a menu-cost model featuring shocks to the volatility of
idiosyncratic firm productivity, see also Hall (2023). Higher volatility reduces the effect of aggregate
demand shocks on output in this context. As described above, our empirical results for supply shocks do
not support menu-costs models.

9In fact, the empirical literature on state-dependent inflation dynamics typically focuses on the effect
of the level of inflation without separating it from the impact of its volatility (see, e.g., Álvarez et al.,
2019).
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We also contribute to the literature on the general pass-through of cost shocks.10 A

large part of this literature centers on the exchange-rate pass-through (see, e.g., Taylor,

2000; Campa and Goldberg, 2005; International Monetary Fund, 2006; Auer and Schoenle,

2016; Álvarez et al., 2017; Enders et al., 2018; Bonadio et al., 2019). A recurrent finding

is a falling exchange-rate pass-through over time until recently, in line with our result

that lower inflation volatility is associated with less frequent price adjustments. Amiti

et al. (2019) and Muehlegger and Sweeney (2022) consider cost shocks more broadly

and find strong strategic complementarities in price setting, an important element in our

explanation of the role of CPI inflation volatility in price setting.11

The remainder of this paper is organized as follows. Section 2 outlines our methodol-

ogy, including shock identification. Section 3 presents the results, with robustness checks

discussed in Section 3.5. Section 5 develops the model, and Section 6 concludes.

2 Methodology

2.1 A Markov-switching model to detect inflation regimes

We detect inflation regimes by employing a Markov-switching autoregressive model (MS-

AR) based on log differences of US CPI data. This type of model was introduced by

Hamilton (1989). The basic modeling idea is that there are different states st of the AR

model characterized by regime-specific model coefficients and error variances. A discrete

first-order Markov process governs the transition between these states. In our setting, we

restrict the model to have two states. The Markov process can then be described by the

following transition matrix:

P =

(
p11 p12
p21 p22

)
, where pi,j = Pr(st+1 = j|st = i),

where inflation dynamics are allowed to differ across states 1 and 2:

∆CPIt =

ν1 + A1,1∆CPIt−1 + · · ·+ A1,4∆CPIt−4 + e1,t, if st = 1

ν2 + A2,1∆CPIt−1 + · · ·+ A2,4∆CPIt−4 + e2,t, if st = 2.
(1)

We explain ∆CPIt (seasonally adjusted CPI data in monthly log differences) by an

intercept νm and autoregressive terms of four lags, which all switch between m = {1, 2}
10Our paper is also related to studies on the price-setting behavior of firms. Given the vast number of

significant contributions in this field, we cannot even give a partial overview of this literature here and
thus focus on the most directly related studies.

11In a similar vein, using surveys, Blinder et al. (1998) and Fabiani et al. (2005) find that firms hesitate
to change prices due to the fear of losing customers to competitors. The importance of competitors’ prices
is further underlined by Dedola et al. (2022), who, employing micro data, ascertain that the pass-through
of import cost shocks is lower for larger firms than for smaller ones, suggesting a role for strategic
complementarities. Similarly, Gödl-Hanisch and Menkhoff (2023), also using micro data, show that the
pass-through of individual cost shocks undershoots that of aggregate shocks by 40%, likely an effect
of strategic complementarity. Moreover, they find a more pronounced pass-through for firms that are
uncertain about their future business situation, aligning with our result of a higher pass-through in
volatile times.
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states, just like the variance of the residual term em,t.
12 We choose a rather small number

of regimes and lags to keep the model as parsimonious as possible and thus to increase the

reliability of the estimates. In this way we also reduce computational cost significantly.

We estimate the model parameters and the hidden Markov chain with the expec-

tation maximization (EM) algorithm.13 We then obtain the filtered state probabilities

Pr(Statet), which we use for constructing the state indicator Ht (Chauvet and Hamilton,

2006). When the filtered probability of being in State 2 is greater than 0.5 in period t,

Ht is assigned the value of 1, and 0 otherwise. Correspondingly, the indicator for being

in State 1 is 1−Ht.
14

2.2 State-dependent local projections

We follow the local projection instrumental variable (LP-IV) approach of Stock and Wat-

son (2018) to construct the impulse responses. This method consists of a first-stage

regression (2) in which the endogenous variable xt is regressed on the instrument Zt, and

a second stage (3) that regresses the response variable yt on the fitted values of the first

stage, x̂t, and a set of (lagged) control variables Wt:

xt = µ1 + β1Zt +
n∑

l=1

δ1,lWt−l + ϵt (2)

yt+h = µ2,h + βLPIV,hx̂t +
n∑

l=1

δ2,lWt−l + ut+h. (3)

The coefficients β̂LPIV,h then represent the impulse responses at each projection horizon h.

µ̂1 and µ̂2 denote the intercepts, ϵt and ut the error terms.

Adding to this core model, we interact the fitted values x̂t and the controls Wt with a

state indicator Ht taking the value 0 in State 1, and 1 in State 2. Modifying the second-

stage equation (3) in this way allows us to estimate state-dependent impulse response

functions (IRFs):

yt+h =µ2,h + (1−Ht)(β
1
LPIV,hx̂t +

n∑
l=1

δ12,lWt−l)

+Ht(β
2
LPIV,hx̂t +

n∑
l=1

δ22,lWt−l) + ut+h.

(4)

The coefficients β̂1
LPIV,h and β̂2

LPIV,h form the impulse responses at horizon h in states 1

and 2 respectively. Estimation of equation (4) is done via ordinary least squares regression

for each projection horizon h separately.

12Since we use monthly data, we also estimated an MS-AR including four lags plus the 12th lag. We
did not observe significant differences in the timing of the resulting regimes. The identified regimes are
generally not sensitive to the lag length.

13For further explanation of the EM algorithm, see Hamilton (1990).
14Our main results remain unchanged if we assign periods to State 2 if the filtered probability is above

0.4 or 0.7, where in the latter case we have to reduce the number of lags to 8, as we would otherwise end
up with too few outliers in State 2, see below.
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The sample we use to estimate our baseline model (4) for the United States is in

monthly frequency and spans from October 1948 to December 2021. The endogenous

variable xt is the log difference of the crude materials producer price index (referred

to as Crude PPI) of the Bureau of Labor Statistics’ stage-of-processing (SOP) system.

For the response yt in the baseline model, we use log differences of the US CPI. In

alternative setups, we also employ the SOP-PPI data for intermediate materials, supplies,

and components (Intermediate PPI), and finished goods (Finished PPI) or the industrial

production SOP data for crude goods (Crude IP) as dependent variables. Appendix A

provides more details on the PPI and IP data.

2.3 Shock identification

To identify the causal effect of a producer price shock on consumer price inflation, we

identify the effects of unexpected and unusual price movements, filtering out smaller ups

and downs over time. Given the relatively high frequency of our data set (monthly),

this approach makes us more confident that we identify actual shocks. To do so, we

introduce a new identification approach and argue that outliers in time series data, which

are often due to rare and unforeseen events, are correlated with the exogenous shocks that

we wish to identify.15 Specifically, we instrument producer prices with a variable based

on data outliers in the respective PPI series and assume that outliers in the PPI series

are correlated with structural producer price shocks but uncorrelated with other shocks.

The outlier-based instrument, hence, satisfies the LP-IV relevance and contemporaneous

exogeneity condition of Stock and Watson (2018).16

To ensure that demand shocks are not the cause of the observed outliers, we only

consider those outliers for which the materials industrial-production index IPM from the

board of governors does not move contemporaneously in the same direction as the Crude

PPI.17 That is, we construct the outlier-based instrument Zt in the following way:

Zt =


1, outlier > 0 & ∆IPM < 0

−1, outlier < 0 & ∆IPM ≥ 0

0, else.

(5)

Zt takes the value of 1 when there is a positive outlier in the PPI series and no positive

movement in the IP series in period t. In case of a negative outlier and no negative

change in the corresponding IP series, Zt = −1, and Zt = 0 if no anomaly is detected.

15Li et al. (2022) also follow a data-driven approach for shock identification as they identify shocks
of Bitcoin and crude oil returns via the empirical quantiles of the two series. Kapetanios and Tzavalis
(2010) show that well-known oil price shock events coincide with periods in which they find an outlier in
their oil price data.

16Those are: i) Zt must be relevant, i.e., the shock of interest ηj,t must be correlated with the instru-
ment: E[ηj,tZt] ̸= 0, ii) Zt must be contemporaneously exogenous to all other shocks η−j,t: E[η−j,tZt] = 0
and iii), Zt must be exogenous to all shocks at all leads and lags: E[ηt+iZt] = 0,∀i ̸= 0.

17We use this IP index as it corresponds closely to the Crude PPI and is available for our whole sample,
starting in 1948.
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Figure 2: Crude PPI growth and outliers. Monthly growth rates (black) of the Crude
PPI series, respectively, against monthly CPI growth (blue). Red circles mark the outliers
generated with the iForest algorithm that survive the restriction described in equation (5).

To ensure that Zt satisfies the third LP-IV condition (exogeneity to all shocks at all leads

and lags), we follow Stock and Watson (2018) and include 12 lags of Zt, yt, ∆ log IPM
t ,

and the growth of the log of the Intermediate PPI, summarized in Wt, as controls in

regressions (2) and (4). Furthermore, we include lags of Zt as controls to correct for a

possible correlation between the instrument and past values of the shock of interest. By

including lags of the materials IP series as a monthly proxy for activity, we correct for

any correlation between Zt and earlier developments.18 Controlling for lags of CPI and

Intermediate PPI growth rules out the possibility that the instrument Zt is correlated

with a shock to consumer prices or the producer prices of the previous stage. This, in

addition to the restriction on ∆IPM , further ensures that the dynamic effect we measure

is not driven by a previous hike in demand leading to an increase in downstream prices

first, followed by increasing upstream prices thereafter.

We detect outliers in the producer price indices using the isolation forest algorithm

(iForest) proposed by Liu et al. (2012).19 Instead of first defining normal instances in the

data, the iForest directly detects anomalies through two quantitative properties: i) anoma-

lies are the minority, and ii) they have attribute values different from those of normal

instances. When setting the proportion of outliers in the PPI series (transformed to log

differences) to 0.08, the iForest algorithm detects 71 outliers.20 Figure 2 shows the Crude

18If Crude IP is the dependent variable, we correspondingly control for Crude IP.
19Specifically, we use the implementation in the Scikit-learn Python package by Pedregosa et al. (2011).

For further explanations of the algorithm, see Liu et al. (2012).
20We choose 0.08 as lower values result in too few shocks and consequently weak instruments. Higher

values might identify price movements that are not connected to clear supply shocks. We, therefore,
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PPI series and the detected outliers at which the materials IP index does not move in

the same direction. The outliers coincide with periods when there were prominent events

on the supply side that led to large movements in Crude PPI inflation. Visible are the

oil-price shock in 1973, which led to a spike in crude-material prices with a subsequent

adjustment and re-escalation, the tensions surrounding the gulf war in 1990, the Asian

crisis in 1997—which caused a decline of Asian commodities demand (exogenous to the

US) and an appreciation of the dollar—OPEC production cuts in early 2001, supply ad-

justments and a dollar appreciation following the financial crisis in 2008, and supply chain

disruptions in 2021.

These shocks occur in phases of low and high inflation volatility. That is, a single

outlier does not necessarily move the economy to a high-volatility regime, which might

happen for a series of large and/or more frequent smaller shocks. For example, as shown

below, turbulent oil prices in the 1970s induced switches to a high-volatility regime, while

the Asian crisis did not.

3 Empirical results

We now turn to the results of the baseline specification. We first describe the differences in

the identified regimes, then the effects of shocks to producer prices on consumer prices and

industrial production in these regimes. In sections 3.3.-3.5 we conduct robustness checks

regarding alternative state-dependencies, based on either the level of inflation or the size

of the shock. Alternatively, we rely on oil-supply shocks as identified by Baumeister and

Hamilton (2019) to measure supply shocks. We also check whether the sign of the shock

makes a difference, change the starting date, check the responses of the interest rate and

other stages of production, and control for the exchange rate. The conclusion remains

the same: it is the prevailing volatility that has a significant impact on the transmission

of supply shocks.

3.1 Identified regimes

Figure 3 shows the filtered state probabilities, estimated with the methodology described

in Section 2.1, and the resulting state indicator Ht in comparison with monthly growth

rates of CPI and inflation volatility. We measure inflation volatility by the variance of

monthly CPI growth over a rolling window of 12 months. As is visible, the inflation

regime is in State 2 whenever there are sudden swings in monthly CPI growth and gen-

erally increased volatility. Specifically, the correlation between the state indicator and a

prefer this rather conservative value. In any case, we also obtain state-dependent responses of inflation
to shocks to Crude PPI for values of, e.g., 0.04 or 0.16.

9



State probabilities

Inflation

Inflation volatility

Figure 3: Identified regimes. Top panel: filtered state probabilities estimated from
model (1); blue line: State 1, black line: State 2. Middle panel: monthly growth of CPI
(black line); white areas: State 1, blue areas: State 2. Bottom panel: inflation volatility
(black lines, variance of monthly CPI growth over a rolling window of 12 months); white
areas: State 1, blue areas: State 2.

volatility indicator variable volt—which takes the value 1 if the absolute change in the

CPI is above its average and zero otherwise—is 30% and significant.21

In the upper panel of Table 1, we report descriptive statistics for the inflation regimes.

The states are relatively persistent: The probability of staying in State 1 when being

in the same state (i.e., p11) is 0.97, and 0.87 for State 2 (p22). This translates to an

average state duration of 33 periods for State 1 and 7.7 periods for State 2. Comparing

the standard deviation of monthly inflation within each state we find an average of 0.27

in State 1 and more than double (0.56) in State 2. This higher volatility is only to a

21Using European micro data from 11 countries over the period 2005-19, Gautier et al. (2024) find an
increased frequency of price setting at the end of the 2000s in the period during and after the financial
crisis, in line with our theoretical interpretation of more flexible prices in State 2. Similarly, Dedola et al.
(2023), making use of the same micro data, argue that recent evidence suggests that the return of higher
and more volatile inflation seems to be associated with higher frequencies of price changes. Furthermore,
Galeone and Gros (2023) find core inflation behavior to have shifted in the 2022/23 period as regards it
magnitude, its rate of change, and its stickiness, as well as its responsiveness to energy prices.
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Parameters State 1 State 2

Probability to stay in regime 0.97 0.87
Avg. state duration in months 33 7.7
Std. dev. of monthly ∆ CPI in % 0.27 0.56
Mean size outliers crude 0.06 0.07
CPI autocorrelation lag 1 0.75 0.48
CPI autocorrelation lag 2 0.65 0.21
Mean of monthly ∆ CPI in % 0.34 0.24

Variables β p-value Variables β p-value

constant -0.30 0.00 volt−5 0.02 0.36
volt 0.46 0.00 volt−6 0.02 0.37
volt−1 0.30 0.00 volt−7 0.05 0.04
volt−2 0.13 0.00 volt−8 0.03 0.14
volt−3 0.12 0.00 volt−9 0.03 0.24
volt−4 0.08 0.00 volt−10 0.00 0.94

R2 0.69 Adj. R2 0.68
Obs. 589

Table 1: Regime characteristics and determinants. Upper panel: characteristics
of the two regimes. All statistics in percent. Lower panel: regression of filtered state
probabilities on exogenous volatility indicator and its lags, maximizing R2.

very low degree driven by larger outliers in the SOP PPI data, as we find similar values

for their mean values at the different stages of production across regimes. Instead, the

regime-dependent autocorrelation of monthly CPI growth seems to contribute more to

the state differences. We calculate this autocorrelation up to two lags, considering only

those regime realizations that consist of at least three consecutive periods. In State 1, we

find a value of 0.75 for the first lag and 0.65 for the second, in contrast to 0.48 and 0.21

for lag one and two in State 2. Interestingly, the overall mean of monthly CPI growth is

0.34% in State 1 and only 0.24% in State 2. This highlights that not the overall level of

inflation but rather its volatility characterizes the different inflation regimes.

We further demonstrate the regime dependence on inflation volatility by regressing

the Markov filtered state probabilities Pr(Statet) on the volatility indicator volt in the

following way:

Pr(Statet) = c+
t=10∑
i=0

volt−i. (6)

The contemporaneous indicator and the first four lags are significant at the 5% level.22

Alternatively, we define the volatility indicator variable vol such that the R2 of the men-

tioned regression is maximized, reaching 0.69, and find a threshold for the absolute value

of the monthly change in CPI growth of 0.43 pp., or 5.28 pp. in annualized terms. That

22That is, observing a higher-than-average absolute change in the CPI increases the likelihood to be
in State 2, resulting from the Markov-switching model, by 17 pp. If, additionally, the last four monthly
absolute changes were also above average, the likelihood is 46 pp. higher.
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is, the optimized indicator variable takes the value of 1 if the absolute change in monthly

inflation is above this threshold and zero otherwise. This value corresponds to approxi-

mately the 90th percentile of our sample; it was reached in, e.g., April 2022 (change in

monthly inflation: -0.6 pp.), May 2022 (0.5 pp.), and July 2022 (-1.22 pp.). The corre-

lation between the Markov state probabilities and this indicator is 0.65 and significant.

The lower panel of Table 1 reports the resulting coefficients from repeating regression (6)

with the optimized threshold. If the current monthly absolute change in CPI growth is

above 0.43 pp., the likelihood of being in State 2 increases by 46 pp. (significant at the

1% level), ceteris paribus. The first four lags are also significant at the 1% level with

decreasing coefficients.

Results are very similar if we include the contemporaneous values of the monthly VIX

index, the growth rate of industrial production, and trend inflation (obtained by HP-

filtering monthly inflation rates): the contemporaneous value and the first four lags of the

volatility remain significant at the 1% level, while the adjusted R2 increases to 0.71. The

optimal threshold for the indicator is still 0.43 pp. of the change in CPI growth and the

correlation of the Markov state probabilities with the indicator remains at 0.65. To sum

up, if annualized monthly inflation changes by more than 5.2 pp., the inflation regime is

likely to switch to State 2. Furthermore, the longer inflation is volatile, the higher the

likelihood of reaching State 2.

3.2 Effects of supply shocks in different volatility regimes

The left panel of Figure 4 shows the state-dependent responses of monthly CPI to a

unit shock to Crude PPI over a horizon of 12 months. We estimate regression (4) by

setting yt equal to the changes in the CPI and report the cumulated responses. They are

significantly different from each other in states 1 and 2 over almost the whole horizon

considered. Specifically, in State 2—the one associated with higher volatility in monthly

CPI growth—CPI reacts faster and stronger, compared to State 1. That is, we find

clear evidence for state dependency of the CPI response to supply shocks, where the

transmission of producer price shocks to consumer prices is stronger and quicker during

a high-inflation-volatility regime than during times of more tranquil inflation.23 The

shaded areas represent 68% confidence bands. We construct them with Eicker-Huber-

White (EHW) heteroskedasticity-robust standard errors as suggested by Montiel Olea

and Plagborg-Møller (2021).24

In Appendix B we check several econometric issues, among them potentially weak

instruments.25 Furthermore, the left panel of Figure C-1 in Appendix C demonstrates

23Inflation remains mostly higher in State 2 up to a horizon of 23 months and falls thereafter.
24They show that when augmenting the local projection with lags of the response variable, EHW

standard errors produce favorable results without the need to further correct for serial correlation in the
regression residuals. In line with this argument, we include 12 lags of yt in the local projection regressions.

25Using the test of Lewis and Mertens (2022), we show that none of our instruments is weak, see the
left panel of Figure B-1.
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CPI Crude IP

Figure 4: Baseline results. Impulse responses in Regime 1 (low volatility, solid blue
lines) and Regime 2 (high volatility, dashed red lines) of CPI to a shock to Crude PPI (left)
and corresponding industrial production response (right). Horizontal axes denote months.
Shaded areas represent 68% confidence intervals.

that the different CPI responses in the two regimes are not due to a more expansionary

monetary policy reaction in State 2.26 Lastly, the right panel of Figure C-1 shows that the

exchange rate appreciates more in the high-volatility regime, such that regime differences

are not due to an exchange-rate depreciation that raises PPIs and the CPI alike.

We also calculate the effect of a shock to Crude PPI on industrial production of crude

goods.27 The right panel of Figure 4 depicts the results. As discussed in Section 2.3,

to identify supply shocks we restrict industrial production to decrease in the period of

a contractionary PPI shock. In the high-volatility regime, this effect is somewhat more

pronounced, but the difference between regimes is much smaller compared to the CPI

response and statistically not different from each other throughout.

3.3 Alternative regimes: inflation level and shock size

As stated in Section 2.1, the Markov-switching model indicated to separate regimes by

their inflation volatility and not by the level of inflation itself. To further demonstrate

that it is this dependency that causes impulse responses to differ across regimes, we no

longer consider regimes as they were found by our Markov-switching model. Instead, we

investigate whether alternative regime definitions based on the inflation level or the shock

size also result in a state-dependent transmission of supply shocks. To this end, we split

regimes such that we are in State 1 whenever inflation is below its average value and in

State 2 if it is above the average. The left panel of Figure 5 shows the results for regimes

below (blue solid lines) and above (red dashed lines) the average inflation level. No clear

state dependency is visible. In particular, while the impact response of CPI inflation after

26Specifically, monetary policy reacts more strongly to a shock to Crude PPI in State 2 than in State 1,
in line with the larger CPI response.

27Given the availability of the Crude IP series, we move the starting date to January 1967.
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Above/below-average values of:

inflation level inflation volatility

Figure 5: Inflation level vs. volatility. Impulse responses in Regime 1 (low state, solid
blue lines) and Regime 2 (high state, dashed red lines) of CPI to a shock to Crude PPI.
Left: State 1/2 if level CPI inflation is below/above average. Right: inflation volatility,
calculated as in Figure 3, below/above average. Horizontal axes denote months. Shaded
areas represent 68% confidence intervals.

a shock to Crude PPI is slightly higher than in State 2, it is below State 1 in the following

periods. To corroborate this finding, we redo the same analysis for different cut-offs of

the inflation level for defining states 1 and 2. Comparing the reactions to supply shocks

in states where inflation is above or below its 65th, 70th, 80th, or 90th percentile shows

very similar responses.28

We then verify that this approach yields state-dependent effects similar to our baseline

results when we use inflation volatility, i.e., the change in CPI inflation, to exogenously

separate regimes (rather than endogenously, as in our baseline). The right panel of Fig-

ure 5 shows the results. State 1 corresponds to a below-average inflation volatility, defined

as in Figure 3. Blue solid lines depict the respective responses, while red dashed lines show

the responses in State 2 (inflation volatility above its average). The state dependency is

indeed similar to our baseline Figure 4, if not stronger. Supply shocks to Crude PPI are

transmitted more quickly and strongly to consumer prices if inflation volatility is above

average.

Next, we turn to the effects of the shock size. In standard menu cost models without

observation costs (such as Golosov and Lucas 2007), price-setting behavior depends on

the size of contemporaneous shocks. A central result is that large input-price shocks have

a relatively larger impact on consumer prices compared to smaller ones, see Ascari and

Haber (2022). Given that periods of higher inflation volatility could be correlated to the

average shock size in these periods, we check whether this correlation can explain the

above findings. Figure 6 shows the reaction to small versus large shocks. We pursue

two alternative strategies. In the left panel, we follow the approach of Ascari and Haber

(2022) and include the term |x̂t| · x̂t in Model (3), in addition to the existing terms. That

28Results are available upon request.
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Interaction term Small/large shocks

Figure 6: Effects of large vs. small shocks. Impulse responses of CPI to a shock to
Crude PPI. Left: specification including linear (solid blue lines) and interaction term |x̂t| · x̂t
(red dashed lines). Right: shock sizes below (solid blue lines) or above (dashed red lines)
average. Horizontal axes denote months. Shaded areas represent 68% confidence intervals.

is, we measure the effect of the squared shock but conserve the sign of the shock. We do

this independently of the regimes, as we are here interested in the effect of the shock size

as an alternative explanation for our results. The effects of input-price shocks on the CPI

via this interaction term and the linear coefficient are plotted by red dashed and blue solid

lines, respectively. The interaction term is either insignificant or even negative, showing

that large supply shocks do not automatically lead to a larger pass-through compared to

smaller shocks.29 If, however, several larger shocks (or a series of smaller shocks) result

in higher CPI volatility, the shock transmission is profoundly altered, see above.

In the right panel of Figure 6, we conduct a similar exercise. Specifically, we separate

the outliers, as identified in Section 2.3, depending on whether they are larger or smaller

than the average. As in the previous exercise, we do not find a significant difference

between the effects of relatively large vs. small shocks. That is, the influence of inflation

volatility on the effect of supply shocks cannot be explained by the differential effects of

the shock size.

3.4 Alternative shocks: oil price shocks

We now turn to an alternative scheme for identifying supply shocks. Specifically, we

exchange our identified shocks with oil-supply shocks, i.e., a series of supply shocks that

are well established in the literature. We use the oil-supply shocks from Baumeister and

Hamilton (2019), which range from February 1975 to December 2022. We again investigate

possible differences in the CPI response in the two regimes identified in Section 3.1. The

29Given that Ascari and Haber (2022) consider the effects of monetary policy shocks instead of supply
shocks, our results do not contradict their findings. For example, the effects of monetary policy decisions
depend to a large degree on central bank communication and media coverage, influencing expectations,
which might work quite differently depending on the size of the shock.

15



Oil shock: baseline controls Oil shock: controls include overall IP

Figure 7: Effects of oil price shocks. Impulse responses in Regime 1 (low volatility, solid
blue lines) and Regime 2 (high volatility, dashed red lines) of CPI to a contractionary oil
price shock by Baumeister and Hamilton (2019). Left: baseline controls; right: controls with
lags of overall IP. Horizontal axes denote months. Shaded areas represent 68% confidence
intervals.

left panel of Figure 7 shows the results. In the right panel we include lags of overall

industrial production as a control, another way to exclude demand shocks as the source

of the responses. As is visible, the effects are similar to our more broad-based supply

shocks of the baseline specification. Specifically, the effects of a supply shock are stronger

on impact and thereafter in the high-volatility State 2.

3.5 Further Robustness

In this section we explore the robustness of our results with regard to the sign of the

shock, different samples, regression setups, and identification schemes.

First, we analyze potential asymmetries between positive and negative shocks. We

first create an instrument containing only the positive outliers and then a second one

with only negative outliers. We estimate both directions of the shock at the same time

to avoid potential biases by truncated variables (Garzon and Hierro, 2021):

yt+h =µ+ β+
h x̂

+
t + β−

h x̂
−
t +

n∑
l=1

δT2S,l,1Wt−l + ut+h. (7)

In Model (7), β̂+
h and β̂−

h denote the positive and negative impulse responses, respectively.

x̂+
t and x̂−

t are the fitted values from a regression of the dependent variable xt (Crude

PPI) on the positive or negative instrument and lagged controls Wt, which are the same

as employed in Model (4). The left panel of Figure 8 reports the resulting CPI responses

to positive (solid blue lines) or negative (red dashed lines, positive values for ease of

comparison) shocks to Crude PPI. The point estimates are fairly similar and confidence

intervals overlap at all horizons. That is, the direction of the shock hardly changes the

shape of the responses. An uneven distribution of positive versus negative shocks is,

therefore, not responsible for the documented state dependency.
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Positive/negative shocks Start in 1972M1

Figure 8: Robustness I. Left: Impulse responses to positive (solid blue lines) and negative
(dashed red lines, positive values) of CPI to a shock to Crude PPI. Right: Impulse responses
in Regime 1 (low volatility, solid blue lines) and Regime 2 (high volatility, dashed red lines)
of CPI to a shock to Crude PPI, starting in 1972M1. Horizontal axes denote months. Shaded
areas represent 68% confidence intervals.

Second, we move the sample start to 1972, after the peg of the dollar to gold was cut

and towards the end of regulated oil prices in the US. Results are shown in the right panel

of Figure 8 and are similar to the baseline estimates. Third, we change the lag length to

8 lags. Figure 9 shows the cases for a starting date in 1948M10 (left panel) and 1972M10

(right panel). Again, results do not change much.

Fourth, we test different specifications of the local projections to further demonstrate

that we do not pick up demand shocks in our analysis. In particular, we include the

contemporaneous value of IPM (in addition to its lags) in the regression. The left panel

of Figure 10 displays the results, which are similar to the baseline. The right panel of

Figure 10 depicts the case in which we do not only restrict IPM to have the opposite sign

Eight lags Eight lags, start in 1972

Figure 9: Robustness II. Impulse responses in Regime 1 (low volatility, solid blue lines)
and Regime 2 (high volatility, dashed red lines) of CPI to a shock to Crude PPI. Left: 8
lags, start in 1948M10. Right: 8 lags, start in 1972M1. Horizontal axes denote months.
Shaded areas represent 68% confidence intervals.
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Contemp. IPM in controls Sign restrictions on IPM and IP

Figure 10: Robustness III. Impulse responses in Regime 1 (low volatility, solid blue
lines) and Regime 2 (high volatility, dashed red lines) of CPI to a shock to Crude PPI.
Left: contemporaneous value of IPM included in controls. Right: sign restrictions on IPM

and overall IP employed. Horizontal axes denote months. Shaded areas represent 68%
confidence intervals.

as Crude PPI, but both IPM and overall industrial production.30 Again, results change

only mildly.

Lastly, we explore the possibility that the identified regimes depend on the dependent

variable. Specifically, as shown by Gonçalves et al. (2024), if a shock affects the response

variable yt, it could also alter the state indicator Ht, if this depends on yt. This might

affect the state-dependent LP estimands and thus generate a bias in the impulse response.

Nonetheless, in our baseline we assume that a one-time unit shock will not induce an

alternation of the states as the regimes we estimate a relatively high persistence of 33

months in State 1 and almost 8 months in State 2.31 In a robustness check, we follow

Ramey and Zubairy (2018) and Cloyne et al. (2023) by lagging the indicator variable in

regression (4). Results remain similar to our baseline. We also regress the state indicator

variable on the contemporaneous and three lags of the fitted values of equation (2). None

of the coefficients turns out to be significant.32

4 Effects on intermediate stages of processing

Next, we analyze the effect of a producer price shock on the prices of products located

downstream in the stages of processing system. That is, we check how a shock to Crude

PPI impacts Intermediate and Finished PPI by setting the response variable yt in (4)

equal to Intermediate (left panel of Figure 11) or Finished PPI (right panel). Note that

neither PPI includes imports. We add the corresponding industrial production data in

30We also include overall IP in the controls in this specification.
31Furthermore, given that lags of inflation volatility are important in determining the volatility regime

(see above), a one-time shock is not likely to induce a regime switch.
32All results are available upon request.
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Crude PPI → Intermediate PPI Crude PPI → Finished PPI

Figure 11: Effects of shocks to Crude PPI on intermediate stages. Impulse re-
sponses in Regime 1 (low volatility, solid blue lines) and Regime 2 (high volatility, dashed red
lines) of Intermediate PPI (left panel) and Finished PPI (right panel) to a shock to Crude
PPI. Horizontal axes denote months. Shaded areas represent 68% confidence intervals.

the controls, which moves, due to data availability, the starting date to 1972M1.33 We

leave the rest of Model (4) unchanged.

We again see a significantly differing response between states 1 and 2 on impact and

in the following periods. The observation is quantitatively larger for Intermediate PPI

than for Finished PPI, where, in turn, the effect is larger than for the CPI. This effect is

as expected since at each stage of processing further inputs, such as labor, are added to

the input materials.

5 Implications for theory

We now turn to potential theoretical explanations for our empirical finding of a stronger

and quicker transmission of input prices to consumer prices in times of high inflation

volatility. Our preferred theory assumes that firms are able to invest in price flexibility.

In Section 5.1, we first rely on the mechanism developed by Devereux (2006) in a one-

period model to derive analytical results. Observation costs as in Álvarez et al. (2018)

or models of rational inattention (Mackowiak and Wiederholt, 2009) could also account

for our evidence. The main intuition is the same across these models: depending on

current observations, firms change their future price-setting behavior. Yet, Devereux’s

mechanism is much simpler while leading to very similar conclusions. It can also be

seen as a direct implementation of price escalation clauses into a standard pricing model.

Our version is kept deliberately simple since we aim to derive analytical results and to

develop an intuition that could be used in several larger models.34 We then move on

to derive quantitative predictions in an infinite-period version, relying on the mechanism

33We equate the industrial production index for primary & semifinished processing with Intermediate
PPI and that of finished processing with Finished PPI.

34See Khalil and Lewis (2024) for a quantitative version of the model in Devereux (2006) that includes
endogenous entry and exit of firms.
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proposed by Kimura and Kurozumi (2010) and others. Here, firms invest in price flexibility

by choosing the probability of being able to set prices in future periods, where higher

flexibility is associated with larger costs.

We discard explanations based on menu costs or Calvo pricing with a fixed Calvo

parameter for the following reasons. In standard menu cost models without observation

costs (such as Golosov and Lucas 2007), price-setting behavior depends on the size of

contemporaneous shocks. A central result is that large input-price shocks have a larger

impact on consumer prices than smaller ones, see Ascari and Haber (2022). This predic-

tion can be tested in our data, see Figure 6 for the reaction to small versus large shocks.

As discussed in Section 3.3, we do not find a significant difference between the effects of

large and small shocks.

Calvo pricing with a fixed Calvo parameter, on the other hand, would predict a con-

stant impact of cost changes on inflation and is, therefore, clearly unable to replicate a

state-dependent pass-through. In the following sections, we, therefore, explore a different

class of models that can replicate our empirical findings.

5.1 Analytical model

We now sketch our preferred theory in a one-period model. We deviate from the original

model in Devereux (2006) by introducing raw input material and a reaction function for

the central bank—the model then features demand, supply, and monetary policy shocks—

as well as simplifying the model by reducing it to a closed-economy setup and assuming

pre-set wages. The following description of the model setup largely follows Devereux

(2006), where more detailed derivations can be found. We introduce more significant

changes to the original model in Section 5.1.2 and list the corresponding calculations in

Appendix D. Model predictions are derived in Section 5.1.3.

5.1.1 Setup

Households maximize a utility function

Ut =
∞∑
t=0

logCt −
L1+ζ
t

1 + ζ
,

subject to the budget constraint CtPt + Bt = (1 + it)Bt−1 + WtLt + CR,tRt + Πt, with

Lt =
∫ 1

0
Lj,t; Ct is consumption, Lj,t is hours worked at firm j, Rt is the aggregate input of

raw materials, CR,t their price, Πt are profits or losses (including price setting costs) from

firms, and Bt are nominal bonds that pay 1 + it in period t+ 1.35 Wt is the wage, which

is equal for all firms. Consumption bundles are composed of infinitely many varieties of

35As we model a closed economy, we assume that raw materials are available with unlimited supply
at an fixed price CR,t = CRR,tWt, where the relative price CRR,t of raw material to labor is exogenously
given.
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goods:

Ct =

(∫ 1

0

C
(ε−1)/ε
j,t dj

)ε/(ε−1)

,

where ε > 1 is the elasticity of substitution between differentiated goods and market

clearing implies Yj,t = Cj,t∀j, t. The aggregate price index is then

Pt =

(∫ 1

0

P 1−ε
j,t dj

) 1
1−ε

.

This setup gives rise to a standard demand function

Yj,t =

(
Pj,t

Pt

)−ε

Y,

with Pj,t as the output price of firm j and Pt denotes the overall price level. Yt represents

total demand in the economy. As we will consider only one period in this version of the

model, we drop time indexes in the remainder of this section.

Now consider firm j that produces according to

Yj = (Ij −DjΦ(j))
α, (8)

where Ij = Rγ
jL

1−γ
j represents firm j’s usage of a combined input factor consisting of

raw material Rj and employment Lj.
36 Φ(j) is a firm-specific cost of price flexibility.

The parameter 0 < α < 1 measures the degree of decreasing returns to scale. The

indicator variable Dj equals one if the firm chooses to have ex-post flexible prices in the

period under consideration and zero if it decides to forego the opportunity of setting

prices after observing this period’s shock realizations. In our context, we interpret this

cost as, e.g., using price-escalation clauses, which might require price discounts to clients

and/or additional legal advice. Similarly, preserving price flexibility by using contracts

that cover only short periods instead of fixing prices for longer may cause costs, such as

lower negotiable output prices and more frequent contracting costs.

A related, but more complex, mechanism relies on ‘observation costs,’ proposed by

Álvarez et al. (2018). In our model, Φ(j) would then be a shortcut to costs arising

from a closer market observation. These costs would induce firms to monitor economic

developments more thoroughly in times of higher volatility, while the model of Devereux

(2006) relies on higher investments in price flexibility. Both models predict that current

observed volatility raises the responsiveness of prices to future shocks, which will be crucial

for accounting for our findings. That is, even large supply shocks transmit to consumer

prices only to a low degree if they happen in tranquil times. This prediction differentiates

these models from other approaches, such as menu cost models without observation costs,

discussed above.

The price MC for one unit of the input factor I consists of the wage W , which is

set in advance and is therefore fixed in this one-period model, and of the price of the

36We fix capital by fixing it at unity, as we are mainly interested in the short-term decisions of firms.
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raw material CR. The latter is stochastic, and so are Y and P , as seen from the firm’s

perspective. As usual, minimized costs for one unit of I are then

MC =
Cγ

RW
1−γ

γγ(1− γ)(1−γ)
. (9)

We refer to unexpected movements in the costs of raw materials as supply shocks. Ex-

pected discounted profits of the firm are

EΓ

[
Pj

(
Pj

P

)−ε

Y −MC

((
Pj

P

)
Y

) 1
α

−MCDjΦ(j)

]
,

where E is the expectational operator and Γ = 1/(PY ) is the stochastic discount factor of

the firm, corresponding to the marginal utility of one dollar of a hypothetical household

with log utility. If the firm chooses to pay the (known, idiosyncratic) costs Φ(j), it

can adjust its price after observing MC,Y, and P ; otherwise, it sets its price based on

expectations regarding these variables. The optimal price for firms that have chosen to

invest in price flexibility is

P 1
j = δ

[
MCα(Ŷ )1−α

]ω
, (10)

where δ = {ε/[α(ε− 1)]}αω and ω = 1/[α+ ε(1−α)]. Furthermore, Ŷ = P εY is the part

of a firm’s demand that is independent of its price. Firms that chose to set their price in

advance do this according to

P 0
j = δ

E
[
ΓMC(Ŷ )

1
α

]αω
E
[
ΓŶ

]αω . (11)

Expected profits under optimal price setting then depend on the choice to invest in price

flexibility in the following way

V 1(Θ) = ΨEΓ(MCα(1−ε)Ŷ )ω

V 0(Θ) = Ψ(EΓMCŶ 1/α)(1−ε)αω(EΓŶ )εω,

where V 1(Θ) are profits for Dj = 1 and V 0(Θ) for Dj = 0. The parameter Ψ equals

δ1−ε − δ−(ε/α) and Θ = {C, Y, P}. The firm chooses ex-post price flexibility whenever the

difference in expected profits for Dj = 1 and Dj = 0 is higher than the discounted costs

of investing in price flexibility, i.e., if V 1(Θ)− V 0(Θ) ≥ Φ(j)E ΓMC, or

∆(Θ) =
V 1(Θ)− V 0(Θ)

E ΓMC
≥ Φ(j). (12)

∆(Θ) is the discounted gain from investing in price flexibility, normalized by the cost

of the combined input factor. This equation can be solved by taking a second-order

approximation around the mean value E lnΘ, see Devereux (2006) for details:

∆(Θ) ≈ Ωα

2
V ar

(
lnMC +

1− α

α
ln Ŷ

)
=

Ωα

2

[
σ2
mc +

(
1− α

α

)2

σ2
ŷ + 2

1− α

α
σmc,ŷ

]
> 0,

(13)
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where lower-case letters stand for percentage deviations from the stochastic steady state,

such as mc = lnMC − E lnMC. Furthermore, Ω = [V (exp(E lnΘ))/ exp(E(ln Γ +

lnMC))]ε(ε − 1)ω2 > 0, where V (exp(E lnΘ)) are profits evaluated at the mean E lnΘ

and σ2
c , σ

2
ŷ, σmc,ŷ>0 are the variances of input costs and market demand, as well as their

covariance. Given expression (9), the cost variance σ2
mc depends on the variance of (the

log of) raw material costs in the following way: σ2
mc = γ2σ2

cR
. Equations (12) and (13)

deliver an important insight in line with our empirical findings: higher volatility σ2
ŷ of

market demand Ŷ = P εY , which itself depends on price volatility, increases the incentives

for firms to invest in price flexibility.

5.1.2 Closing the model

We now close the model, leading to several differences to Devereux (2006). Assume that

there is a unit mass of firms. We then rank firms according to their cost of investing

in price flexibility. The firm with the index j = 0 has the lowest costs Φ(0) = 0 and

the one with j = 1 the highest. We also assume that Φ(j) is uniformly distributed and

differentiable. Denote the index of the firm that is indifferent to whether to invest in price

flexibility or not as z. That is, z is the measure of firms that do invest. The resulting

value of z is determined by the following conditions

∆(Θ) = Φ(z), 0 ≤ z < 1, (14)

∆(Θ) > Φ(1), z = 1. (15)

The overall price index for a given value of z is then

P =
[
z(P 1)1−ε + (1− z)(P 0)1−ε

] 1
1−ε . (16)

Nominal demand is determined by the money supply in the following way

Y P =
M

χ
, (17)

where χ features i.i.d. shocks to velocity and has an expected value of unity.37 We refer to

these shocks as the demand shock from now on. Inserting equation (17) into the optimal

prices of firms (10) and (11), while observing that all firms that can adjust set the same

prices, results in

P 1 = δ
[
MCαP (1−α)(ε−1)(Mν/χ)1−α

]ω
(18)

P 0 = δ
E
[
ΓMC (P ε−1(Mν/χ)1−α)

1
α

]αω
E [P ε−1]αω

. (19)

The central bank sets the change in the nominal money supply based on current inflation:

M

M−1

=

(
P

P−1

)−ϕ

ν, (20)

37These shocks can be derived from shocks to households’ preference for holding money, see Devereux
(2006).
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where we normalize the previous period’s values of the money stock and the price level

to unity M−1 = P−1 = 1. We assume that the central bank does not react to higher in-

flation by increasing the money supply overproportionally, i.e., ϕ ≥ −1. Stricter inflation

targeting corresponds to a higher value of ϕ. The variable ν with an expected value of

unity may stand for monetary policy shocks, but also for systematic deviations from a rule

that focuses on inflation only. In particular, we allow for a positive correlation between

ν and the supply shock, which represents a monetary policy strategy that is relatively

more accommodating in case of supply shocks.38 Theoretically, ν could also be linked to

demand shocks. Given the debate in some policy circles surrounding lower reactions to

inflation in case of supply shocks, we focus on a correlation with this kind of shock.39

To derive the expression for equation (13) in general equilibrium, we use the linearized

price index (18) together with the linearized versions of equations (16) and (20), see

Appendix D. This yields

p =
φ(z)ω

∆
[αmc+ (1− α)(ν̂ − χ̂)] , (21)

with
∆ = 1− φ(z)ω(1− α)(ε− ϕ− 1),

where χ̂ = lnχ−E lnχ and ν̂ = ln ν−E ln ν. The parameter φ(z) is given in the appendix

and follows φ(0) = 0, φ(1) = 1, φ′(z) > 0, φ′′(z) > 0. Using equation (21) we derive—

again in the appendix—the variance of lnMC + 1−α
α

ln Ŷ and use this in equation (13) to

arrive at equations (14) and (15) in general equilibrium as

Ωα

2∆2

[
σ2
mc +

(
1− α

α

)2

(σ2
χ̂ + σ2

ν̂) + 2
1− α

α
σmc,ν̂

]
= Φ(z) 0 ≤ z < 1 (22)

Ωα

2∆2

[
σ2
mc +

(
1− α

α

)2

(σ2
χ̂ + σ2

ν̂) + 2
1− α

α
σmc,ν̂

]
> Φ(1) z = 1, (23)

The covariance σmc,ν̂ corresponds to −ϕmcσmc, see footnote 38.

5.1.3 Model predictions

Equations (22) and (23) then determine the equilibrium value of z, depending on the

variances and covariances of the three shocks. As shown in the appendix, there can be

one or three equilibria. However, in case of multiple equilibria, one is unstable. In the

following, we focus on the description of the stable equilibrium in which the economy is

not already at full price flexibility (i.e., z < 1).40 We first assert the relation between

38The functional form would be ν = (MC/MC−1)
−ϕmc ν̃, with ν̃ being ‘pure’ monetary policy shocks.

39See, e.g., Fabio Panetta, member of the executive board of the ECB, who stated: “Bad inflation
reflects negative supply shocks that raise prices and depress economic activity, which monetary policy
should look through.” (Panetta, 2022)

40If all firms have already invested in price flexibility, changes in parameter values can reduce price
flexibility but can obviously not increase it any further.
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price flexibility and the pass-through of shocks to inflation. Given that the derivative of

the term φ(z)ω/∆ in the expression for the price index (21) with respect to z is positive,

we directly obtain the following lemma.

Lemma 1 (Effect of price flexibility) A higher price flexibility (a higher z) translates

into a larger pass-through of shocks to inflation.

The following proposition then follows from equation (22).41

Proposition 1 (Effects of shock volatilities) Higher volatility of the shocks to the

costs of raw materials (σ2
cR
), demand (σ2

χ̂), and/or the money supply (σ2
ν̂, for a given co-

variance with input costs) raises price flexibility (z) and hence the pass-through of shocks

to inflation.

We also obtain the following corollary, which is linked to our empirical findings.

Corollary 1 (Relation to inflation volatility) Any change in the shock volatilities

σ2
cR
, σ2

χ̂ and/or monetary policy variables (σ2
ν̂ , σmc,ν̂ , and ϕ) that increases inflation volatil-

ity raises price flexibility and hence the pass-through of all shocks to inflation.

Intuitively, higher variances of costs and/or demand make the possibility of a price

adjustment after observing shock realizations more valuable (Proposition 1). This effect

also works via the level of inflation volatility: If the prices of competitors are fluctuating

strongly, it pays off to invest in the ability to change prices after observing the resulting

demand. Higher price flexibility, in turn, increases the response of inflation to shocks. This

aligns with our empirical result: higher inflation volatility leads to a larger pass-through

of cost shocks to inflation (Corollary 1).

Technically, equation (21) implies a larger shock pass-through if more firms have in-

vested in price flexibility (how many firms are able to adjust their price after observing

the shocks) and if monetary policy is less aggressive in fighting inflation (by how much do

the adjusters adjust). The latter, direct effect of monetary policy on demand is standard

in the literature. In particular, a higher value of ϕ raises ∆ and corresponds to stricter

inflation targeting. In the extreme, ϕ approaches infinity, which fixes the price level at its

previous level. Additionally, the impact of ϕ on the variances of the price level and hence

demand changes the firms’ incentives to invest in price flexibility (see above), which en-

tails an indirect influence of monetary policy via φ(z). Regarding the effects of monetary

policy, we can derive the following result.

Proposition 2 (Effects of monetary policy) Stricter inflation targeting (a higher ϕ)

reduces the response of inflation to all shocks in two ways: directly by reacting to the

change in inflation and indirectly by reducing price flexibility. In contrast, an accommo-

dating monetary policy stance towards supply shocks (raising Cov(mc, ν̂)) increases price

flexibility (z) and thereby the pass-through of all shocks to inflation.

41Proofs for the propositions and the corollary are given in Appendix D.
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Regarding the last part of the proposition, note that contractionary supply shocks

increase costs and the general price level simultaneously. Seen from the perspective of

an individual firm under strategic complementarity in pricing, both developments create

an incentive to raise prices.42 Similar reasoning applies to expansionary demand shocks,

which increase demand and the price level. Firms are thus more likely to invest in price

flexibility if the correlation of shocks with the price level is high. By dampening the price

response, monetary policy can reduce this incentive.43 A more accommodating policy,

overall or just in case of supply shocks, counteracts this reasoning and leads—ceteris

paribus—to a higher price flexibility and therefore a higher pass-through of shocks to

inflation.

Despite this clear result, two caveats are in order. First, one argument for a muted

monetary policy reaction to supply shocks is their transitory nature in combination with

lags in the transmission of policy actions. Given that we consider a quite stylized model,

we do not capture this notion here. Second, we are only interested in the connection

between shocks and inflation and, hence, do not conduct a proper welfare analysis.

5.2 Dynamic model

To obtain quantitative predictions beyond those of the analytical one-period version above,

we now move on to a numerical simulation of the infinite-period version. Here, we follow

Kimura and Kurozumi (2010), which is based on concepts from Devereux and Yetman

(2002), and let firms choose their individual degree of price flexibility (their Calvo pa-

rameter θj) once, given the parameters and shock variances. That is, they can set the

probability of being able to adjust prices. As above, they pay the costs Φ whenever firms

get the opportunity to do so, such that higher flexibility entails larger costs.

Specifically, we introduce the above structure of raw material inputs to production

into the New Keynesian framework of Kimura and Kurozumi (2010) and use the resulting

model to analyze different inflation regimes. Thus, we retain the setup of the analytical

model in Section 5.1 but assume an infinite planning horizon and allow the wage to be set

in each period. For simplicity, we assume constant returns to scale, α=1, and constant

costs of being able to adjust prices, Φ(j) = Φ.44 Furthermore, for ease of notation, we

define this cost, expressed in prices of the aggregate output good, as Ft ≡ ΦMCt/Pt.

The firm’s profit maximization is equivalent to minimizing its loss in profit from not

being able to reset its price. Up to second order, this loss is proportional to (see Walsh,

2003)

Lt(θt, θ) = Ft +min
pj,t

Et

∞∑
k=0

(βθj)
k(pj,t − p∗j,t+k)

2 + β(1− θj)
∞∑
k+1

(βθj)
k−1EtLt+k(θj, θ),

42Strategic complementarity is the standard case in this kind of model and is given by assuming α < 1.
43Naturally, lower volatility achieved by reducing monetary policy shocks has the same effect.
44That is, fluctuations in aggregate demand affect costs via the wage rather than through decreasing

returns to scale, with similar implications.
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where lower-case letters refer to variables linearized around the flexible-price steady-state,

β is the firms’ discount factor, and p∗j,t is the price the firm would set if no nominal

rigidities were present, which is p∗j,t = mct = γcR,t + (1 − γ)wt. The wage is determined

from households’ optimization problem and is given by

wt − pt = σct + ζlt = ξyt + ζγcRR,t,

where cRR,t is the relative price of raw materials to labor cR,t−wt and ξ = σ+ ζ/[1+ (1−
θ)Φ/Y )], with Y denoting output in steady state.45 The desired price is therefore equal

to
p∗j,t = pt + γcRR,t + wt = pt + ξxt, (24)

with xt as the output gap. The optimal price that results from this minimization is

p0j,t = (1− βθj)Et

∞∑
k=0

(βθj)
kp∗j,t+k = (1− βθj)Et

∞∑
k+0

(βθj)
k(pt + ξxt+k). (25)

Following Kimura and Kurozumi (2010), we assume that the firm chooses its individual

Calvo parameter θj to minimize the unconditional expected loss in profit due to rigid

prices, which is

ELt(θj, θ) =
1− βθj
1− β

[
F + E

∞∑
k=0

(βθj)
k(p0j,t − p∗j,t+k)

2

]
,

where E is the unconditional expectations operator and F the unconditional expectation

of Ft. That is, firms may decide for higher price flexibility (a lower θj) if they reckon that

it pays off to be able to respond quickly to changing conditions. This is associated with

higher costs, as they have to pay the price-setting costs F more often in this case. The

first-order condition is then, using (24) and (25),

F +
∞∑
k=0

(βθj)
k−1[(k + 1)βθj − k]V

[
k∑

h=1

πt+h + ξxt − L̃t(θj, θ)

]
= 0, (26)

where V is the unconditional variance and

L̃t(θj, θ) =
∞∑
h=1

(βθj)
hEtπt+h + γ(1− βθj)

∞∑
h=0

(βθj)
hEtxt+h.

We reach an equilibrium if the optimal θj = θ for each firm j, which yields the standard

New Keynesian Phillips Curve

πt = βEtπt+1 +
γ(1− θ)(1− θβ)

θ
xt.

On the demand side, household optimization results in the dynamic IS equation

xt = Etxt+1 − (it − Etπt+1 − r∗t )/σ,

45This expression is derived from the linearization of aggregate labor demand, given the production
function (8), in which Dj equals unity if firm j can set its price and α = 1.
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Figure 12: Theoretical responses with counterfactuals. Both panels: Impulse re-
sponses in Regime 1 (low volatility, blue solid lines) and Regime 2 (high volatility, red dashed
lines) of CPI to a unit shock to the price of crude material cR,t. Left: Responses in Regime
1 (blue dashed-dotted line) and Regime 2 (red dotted line) for stricter inflation targeting
with unchanged, regime-specific price-setting frequency. Right: Responses in Regime 1
(blue dashed-dotted line) and Regime 2 (red dotted line) for stricter inflation targeting with
endogenous, regime-specific price-setting frequency. Horizontal axes denote months.

where r∗t is the natural rate of interest, which is given by

rnt = −σγ(1 + ζ)

ξ
Et∆cRR,t+1.

Lastly, we assume a Taylor rule for the interest-rate decisions of the central bank

it = ϕππt + ϕxxt.

To obtain a numerical solution, we search for a θ that, once the model is solved for this

value and the equilibrium paths are inserted into (26), fulfills this equation for θj=θ.

5.2.1 Calibration and model predictions

The calibration of the model equals that of Kimura and Kurozumi (2010), where appli-

cable. That is, we set β=0.99, σ=1.86, ζ=1, ϕπ=1.5, ϕy=0.5 (on an annual basis), and

ρn=0.83, assuming an AR(1) process for cRR,t and hence rnt . Instead of employing their

assumed variance of the natural-rate shock across both volatility regimes, however, we

set this variance differently in each regime. In particular, we choose values such that the

model generates the observed standard deviation of CPI inflation in each regime (0.27%

and 0.56%, respectively). The resulting standard deviation of innovations to rnt is 0.2%

in the low-volatility regime and 0.4% in the high-volatility regime. We then simulate a

shock to the real price of raw materials that raises the nominal costs of raw materials by

1%, as in our empirical estimations.

Figure 12 displays the response of CPI inflation after such a shock in the two regimes.

The blue solid line in both panels represents the low-volatility scenario with a resulting

Calvo-parameter of 0.7, while the red dashed line shows the high-volatility case with an en-

dogenous Calvo-parameter of 0.53. Considering the stylized nature of the—three-equation

New Keynesian—model, we deem the fit to the corresponding responses in Figure 4 as a
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success. In particular and in line with Proposition 1, we obtain a higher inflation on im-

pact and in the following periods in the high-volatility regime, induced by the higher share

of price-adjusting firms. We also conduct two hypothetical scenarios in which the central

bank adheres to stricter inflation targeting by increasing its reaction coefficient ϕ from

1.5 to 2. The left panel of Figure 12 shows the responses if we leave the Calvo-parameter

unchanged for each regime, i.e., at 0.7 and 0.53, respectively. We thereby isolate the

traditional monetary-policy channel that reduces inflation by dampening demand.

While the stronger reaction already achieves a lower inflation response to the cost-

push shock for given values of θ, the effect is magnified once we allow for an endogenous

re-adjustment of the price-setting frequency, as also discussed by Kimura and Kurozumi

(2010). The right panel displays the corresponding responses that result from optimally

chosen Calvo-parameters, based on the shock variances in both regimes (which are un-

changed) and the new value for ϕ. Specifically, we obtain values of θ = 0.79 in the

low-volatility regime and θ = 0.67 in the high-volatility regime. By comparing both pan-

els, we find that the dampening of the inflation response is particularly successful in the

high-volatility regime. In particular, the response in the high-volatility regime for ϕ = 2 is

similar to that in the low-volatility regime for ϕ = 1.5. In short, stricter inflation targeting

pays off double in terms of reducing inflation fluctuations, as predicted by Proposition 2.

6 Conclusion

We examine the impact of producer price shocks on consumer price inflation in the United

States, taking into account different inflation regimes. Employing a Markov-switching

model, we identify two distinct regimes and use the filtered state probabilities to construct

a regime indicator. It turns out that the regimes are characterized by different inflation

volatilities. We then interact a local projections model with the indicator and estimate

responses with Stock and Watson (2018)’s LP-IV approach, using data outliers in the

Crude PPI series as instruments.

We find that the impulse responses of the CPI following a producer price shock are

indeed regime-dependent. If a producer price shock occurs during the high volatility

regime, the increase in consumer prices is more pronounced on impact and takes longer

to decay than in times of stable and low inflation. This distinction is not observable when

considering different levels of inflation or shock sizes.

The main policy implication we draw from our results for inflation-targeting central

banks is that they should pay close attention to the current and potential future inflation

regimes when assessing the impact of current developments. If these developments lead

to high CPI volatility, the economy may transition to a regime where cost shocks are

passed on to consumer prices more rapidly and to a larger extent. This could result in

persistently higher CPI inflation volatility. Put differently, a stricter monetary policy

stabilizes inflation not only directly, but also indirectly by reducing price flexibility.
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Álvarez, F., Lippi, F., and Passadore, J. (2017). Are state and time dependent mod-

els really different? In Eichenbaum, M., Hurst, E., and Parker, J., editors, NBER

Macroeconomics Annual, pages 379–457. University of Chicago Press.

Amiti, M., Itskhoki, O., and Konings, J. (2019). International shocks, variable markups,

and domestic prices. The Review of Economic Studies, 86(6):2356–2402.

Ascari, G. and Haber, T. (2022). Non-linearities, state-dependent prices and the trans-

mission mechanism of monetary policy. The Economic Journal, 132:37–57.

Auer, R. A. and Schoenle, R. S. (2016). Market structure and exchange rate pass-through.

Journal of International Economics, 98:60––77.

Bank for International Settlements (2022). Annual economic report. Chapter II.

Baumeister, C. and Hamilton, J. D. (2019). Structural interpretation of vector autore-

gressions with incomplete identification: Revisiting the role of oil supply and demand

shocks. American Economic Review, 109:1873–1910.

Berger, D. and Vavra, J. (2019). Shocks versus responsiveness: What drives time-varying

dispersion? Journal of Political Economy, 127(5):2104–2142.
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Appendix

A Data description

Seasonally adjusted data on the CPI and the three producer price indices were obtained

from the US Bureau of Labor Statistics (BLS). Until 2014, the BLS used the stage of

processing (SOP) aggregation system to report producer prices. Afterward, the BLS

switched to the Final Demand-Intermediate Demand (FD-ID) system. Table A-1 reports

the SOP and the corresponding FD-ID codes as well as the respective variable names.

The BLS defines crude materials as unprocessed goods and intermediate materials

as processed goods that businesses purchase as inputs for their production. Products

included in the Crude PPI enter the market for the first time and will undergo processing

when purchased. Intermediate materials are already processed to some degree but need

further processing before becoming a finished good. Finished goods comprise commodities

used for personal consumption or that businesses use as capital investment. Government

purchases and exports are excluded from the SOP system.

SOP Code Title FD-ID Code Title
SOP1000 Crude materials ID62 Unprocessed goods for

intermediate demand
SOP2000 Intermediate materials,

supplies and components
ID61 Processed goods for

intermediate demand
SOP3000 Finished goods FD49207 Finished goods

Table A-1: Variable description of Crude (SOP1000), Intermediate (SOP2000), and
Finished (SOP3000) PPI. More information available on https://www.bls.gov/ppi/fd-
id/ppi-stage-of-processing-to-final-demand-intermediate-demand-aggregation-system-
index-concordance-table.htm.
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Seasonally adjusted data on the stages of processing industrial production indices and

overall industrial production were retrieved from the Federal Reserve Board (FRB). The

indices are classified into raw materials, primary & semifinished processing, and finished

processing, and are available since 1972, or 1947 in the case of IP Materials.

B Econometric checks

Our instrumental variable consists of few non-zero data points and can thus be charac-

terized as a sparse instrument. Giacomini et al. (2022) argue that sparse instruments,

often constructed from narrative restrictions, are likely to be weak instruments. We test

the relevance of our IV by applying the robust test for weak instruments with multiple

endogenous regressors proposed by Lewis and Mertens (2022). We interact the instru-

ment and Crude PPI (our endogenous regressor) with the state indicator Ht and use the

same set of controls as in our respective local projection specifications. Following Lewis

and Mertens (2022), the test rejects weak instruments if the test statistic lies above the

critical value. For our baseline specification, this is the case at all horizons and for all

three stages of processing PPIs, as can be seen in Figure B-1.

Figure B-1: Left panel: Results of the Lewis and Mertens (2022)-test for weak instruments:
difference of test statistic and critical value for baseline results (Figure 4). Right panel: same
statistic between stages of processing (Figure 11). Horizontal axes denote months.

C Alternative channels

The left panel of Figure C-1 shows the response of the shadow rate—the updated series

from Krippner (2013)—to shocks to Crude PPI. As visible, the monetary policy reaction

is not responsible for the observed state dependency of CPI responses. Monetary policy

reacts more to shocks to Crude PPI in State 2 than in State 1, in line with the stronger

inflation response. That is, if anything, monetary policy dampens the further course of

inflation.
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FFR response EER response

Figure C-1: Impulse responses of shadow rate (left panel) and nominal effective exchange
rate (right panel, higher values correspond to an appreciation) in Regime 1 (low volatility,
solid blue lines) and Regime 2 (high volatility, dashed red lines) to shocks to PPI. Horizontal
axes denote months. Shaded areas represent 68% confidence intervals.

The right panel shows the response of the nominal broad effective exchange rate (EER),

provided by the BIS. We reduced the lag number to 8 since the exchange rate is only

available from 1994 onward. The exchange rate appreciates more in the high-volatility

regime, in line with the stronger interest-rate response. That is, the stronger inflation

reaction in the high-volatility regime cannot be explained by a depreciation that leads

to rising PPIs at all stages of production and the CPI. Similarly, the responses of the

Intermediate PPI and the Finished PPI in Figure 11, which exclude imports, further

demonstrate that our results are not driven by the exchange-rate response.

D Model derivations and proofs

Derivation of equation (21). The linearized price index is, see Devereux (2006),

p = φ(z)p1,

with

φ(z) =
z exp(E lnP 1(1− ε))

z exp(E lnP 1(1− ε)) + (1− z) exp(E lnP 0(1− ε))
.

The linearized price (18) of flexible firms p1 reads as

p1 = αωmc+ (1− α)(ε− ϕ− 1)ωp+ (1− α)ω(ν̂ − χ̂)

such that (21) results.
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Derivation of equations (22) and (23). Given the expression (21) for the price index,

we obtain ŷ as

ŷ =
(ε− ϕ− 1)φ(z)ω

∆
[αmc+ (1− α)(ν̂ − χ̂)] + ν̂ − χ̂

=
(ε− ϕ− 1)φ(z)ωα

∆
mc+

1

∆
(ν̂ − χ̂) .

We therefore get the following

mc+
1− α

α
ŷ =

1

∆

[
mc+

1− α

α
(ν̂ − χ̂)

]
.

The resulting variance is then

V ar

(
mc+

1− α

α
ŷ

)
=

1

∆2

[
σ2
mc +

(
1− α

α

)2

(σ2
ν̂ + σ2

χ̂) + 2
1− α

α
σmc,ν̂

]
,

which can be used in equation (13), together with equation (12), to derive conditions (22)

and (23).

Proof of Proposition 1. Note that

∆ =
α + ε(1− α)− φ(z)(1− α)(ε− ϕ− 1)

α + ε(1− α)

=
α− φ(z)(1− α)(ϕ− 1) + ε(1− α)(1− φ(z))

α + ε(1− α)
> 0,

which holds since ϕ < 1. Furthermore, ∆ = 1 at z = 0, such that the left-hand-side of

inequality (22) is positive at z = 0. At this point, the right-hand-side Φ(0) = 0 (there is

a firm that has zero costs of investing in price flexibility). Moreover, Φ′(z) > 0. The sign

of the slope of the left-hand-side is determined by

∂∆−2

∂z
= 2∆−3ω(1− α)(ε− ϕ− 1)φ′(z).

This expression is positive if ϕ > 1 − ε and vice versa. A positive slope corresponds

to strategic complementarity in the choice of flexibility: the more firms choose to invest

in price flexibility, the more it pays off for an individual firm to also do so. A negative

slope corresponds to strategic substitutability in the choice of flexibility, see Devereux

(2006). We hence get a unique equilibrium value for z if ϕ ≤ 1− ε. Note that the second

derivative of ∆−2 with respect to z can only be negative if the first derivative is also

negative. For ϕ > 1− ε, we have therefore three possibilities: a) one unique equilibrium

at 0 < z < 1, b) one unique equilibrium at z = 1, or c) three equilibria, one for a low value

of 0 < z < 1, one at an intermediate value of 0 < z < 1, and one at z = 1. All considered

equilibria are stable—except for the intermediate one in the case of three equilibria—as

for lower z the benefit of investing in price flexibility (left-hand-side of inequality (22))

is higher than the costs Φ(z). We therefore disregard the intermediate equilibrium in
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the case of three equilibria. If we are already at the corner solution, z can obviously not

rise any further. Since the left-hand-side of inequality (22), for any given value of z, is

increasing in σ2
mc, σχ̂, and σ2

ν̂ , and its slope is, for interior solutions, larger than that of

the right-hand-side, Proposition 1 obtains. ■

Proof of Corollary 1. The volatility of the price level (21) is

σ2
p =

(
φ(z)ω

∆

)2 [
α2σ2

mc + (1− α)2(σ2
ν̂ + σχ̂2) + α(1− α)σmc,ν̂

]
=

2α(φ(z)ω)2

Ω
∆(Θ).

The corollary directly follows from this. ■

Proof of Proposition 2. The direct effect of a changing ϕ is visible when taking the

derivative with respect to ϕ of the term in the price index (21) that multiplies all shocks:

∂φ2(z)ω∆−1

∂ϕ
= φ(z)ω∆−2ω(1− α) > 0.

Reducing ϕ (stricter inflation targeting) hence decreases the effect of shocks on inflation

for a given value of z. The indirect effect of changing ϕ on z depends on the following

derivatives (remember that ∆ > 0 from the proof of Proposition 1):

∂∆−2

∂ϕ
= 2∆−3φ(z)ω(1− α) ≥ 0

∂∆(Θ)

∂σmc,ν̂

=
Ω(1− α)

∆2
> 0,

where the first derivative determines the sign of ∂∆(Θ)/∂ϕ and ∆(Θ) is the left-hand-side

of inequality (22). Proposition 2 follows directly from these derivatives. ■
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