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Abstract

We present a three-person, two-period bargaining game with private information. A single

proposer is seeking to secure agreement to a proposal under either majority or unanimity rule.

If the first period proposal fails, the game ends immediately with an exogenously given “break-

down” probability. Two responders have privately known disagreement payoffs. We characterize

Bayesian equilibria in stagewise undominated strategies. Our central result is that responders

have a signaling incentive to vote “no” on the first proposal under unanimity rule, whereas no

such incentive exists under majority rule. The reason is that being perceived as a “high break-

down value type” is advantageous under unanimity rule, but disadvantageous under majority

rule. As a consequence, responders are “more expensive” under unanimity rule and disagree-

ment is more likely. These results confirm intuitions that have been stated informally before

and in addition yield deeper insights into the underlying incentives and what they imply for

optimal behavior in bargaining with private information.
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1 INTRODUCTION

1 Introduction

A fundamental problem in Political Economics is the choice between alternative q-majority rules. In

seminal work, Buchanan and Tullock (1965) analyzed this choice from a constitutional perspective.

They argued, largely informally, that unanimity rule has the advantage of ensuring that all decisions

constitute Pareto improvements, but the disadvantage that it may be associated with large ”decision

costs”. One reason is that unanimity rule may induce incentives for individuals to “act tough”

during negotiations. For example, bargainers may attempt to commit to a tough stance, or pretend

to be opposed to agreement, hoping to secure concessions from others. Such incentives may be

mitigated by the use of less-than-unanimity rules.

Certain aspects of these ideas can be formalized using models involving perfect information

(see, e.g., Miettinen and Vanberg (2024)). However, the core intuition as well as its real-world

counterpart clearly involve private information about individual inclinations to support a proposal.

In the presence of private information, the actions taken by individual bargainers may act as (costly)

signals of their privately known preferences. Our aims in this paper are to model the role of private

information explicitly, in order to investigate how such signaling incentives are affected by the

decision rule being used, and to gain a deeper understanding of what they imply about optimal

behavior by proposers and responders in bargaining with private information. In particular, our

focus will be on the signaling value of voting to support or reject a proposal and how it is affected

by the decision rule and the type of proposal being considered.

We analyze a two-period, three-player bargaining game involving a fixed proposer who is trying

to secure agreement to a reform, either under majority (q = 2) or unanimity (q = 3) rule. The

two responders can be of two different types, who differ in their willingness to agree to the reform.

This difference is modeled by endowing each responder with a privately known “breakdown value”

(either “high” or “low”), which they receive if no agreement is reached. A natural interpretation is

that a player’s “breakdown value” reflects the utility of the “status quo” which will prevail if the

reform is not implemented. The proposer is endowed with a single monetary unit that she can use

to “buy” the responders’ votes, and she has (at most) two chances to get a proposal passed. The

monetary unit can be interpreted as a transferable surplus that will be generated by the proposed

change to the “status quo”. Breakdown occurs with some probability if the first proposal fails,

and for sure if the second proposal fails. (The game is formally defined in Section 3.) Despite its

simplicity, this game is very rich in strategic complexity. This is due to the endogenous signaling

effects associated with voting behavior. Our equilibrium concept is Perfect Bayesian Equilibrium

in stagewise undominated strategies.

A key insight emerging from the analysis is that responders consider two types of incentives
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1 INTRODUCTION

when choosing how to vote on a given proposal. The first relates to the influence of their vote on the

fate of the proposal under consideration. The second pertains to its effect on the proposer’s belief

about their type. Under some circumstances, these incentives may point in opposite directions.

That is, a responder may prefer that a given proposal passes, but fear that voting “yes” will reveal

something about their type which they would rather conceil. The relative importance of these

considerations depends on the probability with which the responder’s vote is pivotal. The strategic

implications are quite intricate, and play out quite differently under majority and unanimity rule.

Our main results are as follows. Under both majority and unanimity rule, voting “no” on certain

first period proposals constitutes a signal that a responder is a “high” type. Under unanimity rule,

this signaling effect benefits the responder in the sense that it causes the proposer to make a more

favorable offer to him in Period 2. We refer to this as a positive “signaling value” from rejection.

Under majority rule, by contrast, the signaling value is generally negative, because responders who

vote “no” can be excluded from subsequent coalitions (and it is in the interest of the proposer to

do so). As a consequence of this difference in signaling incentives, responders are “more expensive”

(in a sense that will be made more precise) under unanimity rule. The set of proposals that can

pass in Period 1 is significantly larger under majority rule, not just because agreement requires

fewer “yes”-votes, but also because responders are more willing to vote “yes” when allocated a

given share. Under majority rule, agreement in the first period is more likely in the sense that, for

a wide parameter range, the proposer will find it optimal to immediately secure one responder’s

agreement, while under unanimity rule, she prefers to make a proposal that fails with positive

probability.

Overall, these results lend support to the intuitive argument that unanimity rule induces

“tough” bargaining behavior and is associated with greater delay. In addition, our analysis provides

a deeper understanding of the signaling incentives in multilateral bargaining as well as implications

for optimal behavior in the presence of private information. The rest of the paper is organized

as follows. Section 2 discusses related literature. Section 3 presents our game and equilibrium

concept. Sections 4 and 5 present analyses of majority and unanimity rule, respectively. Section

6 compares the results in order to make precise our conclusions that unanimity rule is associated

with higher “prices” and more delay. Section 7 concludes and discusses the additional strategic

insights generated by the analysis. Proofs are presented in the Appendix.
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2 RELATED LITERATURE

2 Related Literature

Our contribution fits broadly into a literature on q-majority rules in multilateral bargaining games

with complete information. More specifically, there is a connection to models that involve any sort

of heterogeneity with respect to individual players’ willingness to agree. For example, consider a

standard Baron and Ferejohn (1989) bargaining game with complete information and heterogeneous

discount factors. There, a larger discount factor implies a “tougher” bargaining stance and a higher

“price” for a player’s vote. It is folk knowledge that this is advantageous under unanimity rule but

not under majority rule. That is, a player’s expected payoff is increasing in his discount factor under

unanimity rule, but non-monotone (and eventually decreasing) under less-than-unanimity rules.

Miller et al. (2018) consider a modified Baron-Ferejohn game with commonly known breakdown

values and show that a larger breakdown value is advantageous under unanimity rule, but can be

bad under majority rule because “expensive” players are excluded from winning coalitions. These

results are suggestive of the idea that, when the source of heterogeneity is private information,

players would like to signal that they are “tough” (e.g., have a large discount factor or breakdown

value) under unanimity rule, while they would not like to do so under less-than-unanimity rules.

The literature on multilateral bargaining with private information is scarce. Tsai and Yang

(2010) investigate a three-player, three-period Baron-Ferejohn game with private information about

discount factors. They show that under majority rule, equilibrium might involve delay and oversized

coalitions. An important difference between our paper and Tsai and Yang (2010) is that we also

investigate unanimity rule, allowing us to discuss the different signaling incentives associated with

different voting rules.1

Chen and Eraslan (2014) investigate a three-player majoritarian bargaining game over an ide-

ological and distributive decision with private information about ideological intensities. As in our

setting, a single proposer is seeking the support of either one (majority rule) or both (unanimity

rule) responders, and she is unsure as to how much each responder must be paid in order to secure

his vote. Unlike in our setting, the proposer can make only one proposal, so there is no room for

costly signaling by voting “no”. Instead, Chen and Eraslan (2014) consider cheap talk commu-

nication prior to the proposal stage. They investigate the circumstances under which cheap talk

communication can credibly convey information. A central finding is that competition between the

two responders may result in less information conveyed in equilibrium and may make the proposer

worse off as compared to unanimity rule (and only one responder). (Chen and Eraslan (2013)

1Tsai (2009) discusses a similar game under both majority and unanimity rule, deriving conditions for the existence
of separating and pooling equilibria. Our model differs in several respects, and we provide a significantly more
comprehensive equilibrium analysis.
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3 BARGAINING GAME AND EQUILIBRIUM CONCEPT

investigate a similar model in which the responders’ ideal points are private information.)

Our paper is also related to the literature on reputational bargaining. Abreu and Gul (2000)

investigate a bilateral bargaining game in which players may, with some probability, be of an

“obstinate” type that is committed to claim a certain share of the pie. They show that the

presence of such types creates incentives for “rational” types to imitate them, i.e., to “act tough”.

Ma (2023) applies this idea to a multilateral majoritarian bargaining game and finds that the threat

of exclusion under majority rule removes this incentive to act “tough”.

Finally, our paper is also related to the literature in bilateral bargaining with private informa-

tion. Naturally, these models only consider unanimity rule (q = n = 2). The paper that is most

relevant to our analysis is Fudenberg and Tirole (1983), who investigate a two-person, two-period

bargaining game in which a seller is looking to sell an object to a buyer whose valuation is privately

known. The seller has two chances to make a proposal (suggested price). As in their model, equi-

librium strategies in our context necessarily involve buyers mixing between accepting and rejecting

certain proposals.

3 Bargaining Game and Equilibrium Concept

The bargaining game The game involves three players, a Proposer (P, she) and two responders

(R1 and R2, he). The game lasts two periods t = 1, 2. Each period consists of a proposal stage

and a voting stage. During the proposal stage, P makes a proposal xt = (x1t, x2t) ∈ X, where

X = {(x1, x2) : xi ≥ 0, x1 + x2 ≤ 1}. Then R1 and R2 simultaneously vote either “yes” (Y ) or

“no” (N ), denoted vit ∈ {Y,N}. If q responders vote Y, the proposal passes. In this case the

payoffs are πP = 1 − x1t − x2t and πi = xit for i = 1, 2. If fewer than q responders vote Y, the

proposal fails. If the Period 1 proposal fails, the game ends in “breakdown” with probability (1−δ)

and otherwise continues to Period 2. If the Period 2 proposal fails, the game ends in breakdown.

In case of breakdown in either period, P’s payoff is πP = 0 and Ri’s payoff is πi = bi, where bi

denotes an exogenously given “breakdown value”.

Responders can be of two types, which we denote T ∈ {L,H} (“low”, ”high”). The “low”

type’s breakdown value is denoted l > 0, and the “high” type’s is h > l. Thus, the high type is

more strongly opposed to agreement, and presumably requires a larger compensation in return for

a ”yes” vote. For some of what follows, it will be convenient to define τ = h− l to be the difference

in high and low breakdown values. Types are independently drawn and equally likely ex ante.

Throughout the analysis, we assume that agreement is efficient even in the “worst case” where

both responders are of type H. This requires h < 1
2 (implying τ < 1−2l

2 ). This assumption implies
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3 BARGAINING GAME AND EQUILIBRIUM CONCEPT

that P is willing to offer both responders h in Period 2 if she is sufficiently sure that they are both

of type H.2 Note that payoffs are not discounted, but delay is costly due to the probability of

breakdown.

Strategies A pure strategy for P specifies a Period 1 proposal x1 = (x11, x21) as well as a Period

2 proposal following any history that leads to Period 2. Such a history consists of a Period 1

proposal and voting patterns v1 = (v11, v21) ∈ {Y,N}2, where vi1 denotes Responder i’s vote on

the first proposal. If s ∈ X ×{Y,N}2 is a history leading to failure of the first proposal, we denote

P’s ensuing Period 2 proposal by x2(s). For example, x2
(
(12 , 0), (N,N)

)
) is the proposal made

following a history where (12 , 0) was proposed in Period 1 and both responders voted N.

A strategy for Responder i specifies type-dependent acceptance probabilities µT
it(x) ∈ [0, 1] for

all x ∈ X and t = 1, 2.3 For some parts of the analysis, we will drop the dependence on both t and

x (when both are considered fixed), and write Ri’s acceptance probabilities as µi =
(
µL
i , µ

H
i

)
. For

example, µ1 = (1, 0) means that R1 votes Y if his breakdown value is low and N if his breakdown

value is high.

Equilibrium concept Our equilibrium concept is perfect Bayesian equilibrium in stagewise un-

dominated strategies, with an intuitive restriction on off-path beliefs. In the following definition, a

“history” is a complete description of all proposals and votes that occur before an information set

at which a given player is called upon to take an action.

Definition 1. A strategy profile (σ1, σ2, σP ) and (common) belief system ω is an equilibrium if the

action specified by each σi at each history maximizes i’s payoff given beliefs at that history and in

addition, the following criteria are met:

1. In all stages of the game involving simultaneous actions, strategies place zero probability on

actions which are weakly dominated given continuation payoffs implied by equilibrium play

in later stages.

2. Beliefs are formed using Bayes’ rule whenever possible.

3. Off-path beliefs satisfy:

2Admittedly, this assumption is restrictive, as it precludes an analysis of the substantively interesting case where
agreement may be inefficient. However, as will become clear, the analysis is quite involved and involves several case
distinctions even under this simplifying assumption. Thus the more general case is left for future research.

3In principle, Period 2 acceptance probabilities could depend on elements of the history other than the proposal
x2. However, elimination of weakly dominated strategies implies that in equilibrium they will not. It is therefore
without loss of generality to write acceptance probabilities as functions of x and T only.
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4 MAJORITY RULE

(a) If receiver i votes N following a Period 1 proposal at which his equilibrium strategy is

µi = (1, 1) (i.e., following an unexpected N-vote), beliefs assign probability 1 to that

responder being a high type.

(b) If receiver i votes Y following a Period 1 proposal at which his equilibrium strategy is

µi = (0, 0) (i.e., following an unexpected Y-vote), beliefs assign probability 0 to that

responder being a high type.

Outline of analysis We begin by providing a comprehensive analysis of all “continuation equi-

libria” following any first round proposal. It will turn out that many proposals admit multiple

continuation equilibria. The reason is that voting in Period 1 determines Period 2 beliefs, which in

turn determine the Period 2 proposal, inducing expectations that rationalize the Period 1 voting

patterns in a self fulfilling loop.

To deal with this multiplicity, we focus on those continuation equilibria which the proposer

most prefers. This approach can be motivated by imagining the proposer making a self-enforcing

announcement as to his intentions in the event of proposal failure. Finally, we identify the optimal

first round proposal given this refinement.

4 Majority rule

We analyze the game by backward induction, beginning with the final vote (Lemma 1) and the

second period proposal.

4.1 Period 2 voting and proposals

Since the game ends in breakdown if the Period 2 proposal fails, responders compare what they are

offered to their breakdown value. Voting insincerely is weakly dominated, and it is without loss of

generality to assume that responders vote Y when indifferent. This establishes the following.

Lemma 1. In any equilibrium, responders vote Y in Period 2 iff xi2 ≥ bi, that is iff they are offered

at least their breakdown value.

In Period 2, three types of proposals can conceivably be optimal: Offering h to one responder

(and zero to the other) ensures agreement irrespective of their type. Offering l to one responder

passes only if the respective responder is a low type. Offering l to both passes if at least one is a

low type. Which of these options is optimal will depend on P’s beliefs.

Let ω = (ω1, ω2) denote P’s belief concerning the probabilities that R1 and R2 are high types.

(This will depend on the prior history, but is treated as given at this stage of the analysis.) Figure 1
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4.1 Period 2 voting and proposals 4 MAJORITY RULE

graphically depicts the optimal second period proposal as a function of these beliefs. (See Appendix

A.1 for the derivation and functional form.)

Figure 1: Period 2 Proposals (majority rule)

The figure depicts the Period 2 proposals that P makes given arbitrary beliefs about the responders’ types. The

horizontal and vertical axes measure the probability that R1 and R2 are of the high type, denoted ω1 and ω2

respectively. The left and right panels distinguish the cases where τ = h − l is greater or smaller than τ̂m ≡ 1+2l
4

,

which determines the optimal proposal in case ω1 = ω2 = 1
2
.

Note that the Period 2 proposal is qualitatively affected by whether the difference between the

two types’ disagreement payoffs, denoted τ = h − l, is small or large. In the following analysis, it

will be useful to define a threshold for τ at which this qualitative change occurs. We thus define

τ̂m ≡ 1 + 2l

4
.

Suppose for a moment that no information is revealed prior to Period 2, so that ω = (12 ,
1
2).

Then if τ < τ̂m, P prefers to offer one responder h in order to make sure that her proposal passes. If

τ > τ̂m (i.e., low types are significantly cheaper), P prefers to “gamble” by offering both responders

l, which passes with probability 3
4 .
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4.2 Continuation values and beliefs 4 MAJORITY RULE

4.2 Continuation values and beliefs

Let uTi (s) denote Ri’s expected utility in Period 2, following a history s, and given his type T . In

general, this will depend on the beliefs ω = (ω1, ω2) induced by the prior history. For example,

if τ > τ̂m, then any history that induces beliefs ω = (12 ,
1
2) will be followed by the proposal

x2 = (l, l). Therefore, the expected utility of a low type responder at such histories is l (which he

receives irrespective of whether the proposal passes or not), while the expected utility of a high type

responder is l+h
2 , as she will vote N and the proposal will pass if and only if the other responder

is low. Similar reasoning applies for histories inducing other beliefs.4

Under majority rule, Period 2 is reached only if both responders voted N in Period 1. Then,

provided that the Period 1 acceptance probabilities are (µL
i , µ

H
i ) ̸= (1, 1), the Period 2 belief about

Responder i (given that he voted N) is given by

ωN
i =

1− µH
i

2− µH
i − µL

i

In case (µL
i , µ

H
i ) = (1, 1), beliefs following an “unexpected” (off path) N-vote are not determined

by Bayes’ rule. As noted above, we assume in this case that ωi = 1. The following Lemma is stated

without proof.

Lemma 2. In any equilibrium and following any history s, Responder i’s Period 2 expected payoff

under majority rule satisfies

• uTi (s) ∈ [0, h] for T ∈ {L,H}, and

• uHi (s) ≥ uLi (s).

4.3 Period 1 voting

Fix an arbitrary Period 1 proposal (x1, x2), and consider how Responder imay vote on this proposal

in what we will call a “continuation equilibrium”. Under majority rule, his vote makes a difference

only in the event that the other responder votes N. In this case, voting Y yields xi, while voting N

yields (1− δ) bi + δuTi (s), where s is the history consisting of proposal (x1, x2) and voting pattern

(N,N). Therefore, voting Y is weakly dominated if xi < (1− δ) bi + δuTi (s), while voting N is

weakly dominated if xi > (1− δ) bi + δuTi (s). Then the following lemma follows directly from the

fact that uTi (s) ∈ [0, h].

4For some values of ω, P is indifferent between multiple proposals. As a consequence, such ω are consistent with
an entire set of continuation values consistent with P mixing between those proposals. In addition, different histories
leading to such a belief may be associated with different continuation values, as P’s proposal (mix) could depend on
the history itself.

9



4.3 Period 1 voting 4 MAJORITY RULE

Lemma 3. Let (x1, x2) be an arbitrary Period 1 proposal. Then in any equilibrium under majority

rule,

• if xi ≥ h, then µL
i = µH

i = 1,

• if xi ≥ l + δτ , then µL
i = 1,

• if xi < (1− δ)h, then µH
i = 0, and

• if xi < (1− δ) l, then µL
i = µH

i = 0.

Proof. All strict inequalities follow from elimination of weakly dominated strategies. The weak

inequalities in cases (1) and (2) are without loss of generality, since an arbitrarily small increment

in the offer would guarantee acceptance.

A Corollary to Lemma 3 is that a low type is always at least as likely to vote Y as a high type,

with implications for the signaling consequences of voting N.

Corollary 1. In any equilibrium under majority rule, for any Period 1 proposal (x1, x2), µ
L
i ≥ µH

i .

In particular,

• if µH
i > 0, then µL

i = 1, and

• if µL
i < 1, then µH

i = 0.

Thus ωN
i ≥ 1

2 .

Proof. Suppose µH
i > 0. Then voting Y is not weakly dominated for a high type, which implies

that voting N is weakly dominated for the low type. Analogous reasoning establishes the second

observation. The last obviously follows from the other two.

Another implication of Lemma 3 is the following.

Corollary 2. In any equilibrium under majority rule, any Period 1 proposal that allocates at least

h to at least one responder passes immediately.

Thus what remains to be analyzed is voting on proposals that allocate strictly less than h to

both responders.
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4.3 Period 1 voting 4 MAJORITY RULE

4.3.1 Continuation equilibria when xi1 < h for i = 1, 2

The following algorithm can be used to fully characterize the set of continuation equilibria following

any such proposal. The idea behind this algorithm is to begin by positing a pattern of acceptance

probabilities and then to back out the set of first round proposals that are consistent with that

pattern.

Algorithm to characterize continuation equilibria following Period 1 proposals with

xi1 < h for i = 1, 2 (majority rule)

Let M be the set of acceptance probability vectors µ =
(
µL
1 , µ

H
1 , µL

2 , µ
H
2

)
that are consistent

with Corollary 1. For each µ ∈ M ,

1. Identify the belief vector ω =
(
ωN
1 , ωN

2

)
induced by a history in which both responders

voted N. (Note that this is the only history leading to continuation play.)

2. Characterize the (set of) continuation value vectors u = (uL1 , u
H
1 , uL2 , u

H
2 ) that are con-

sistent with Period 2 equilibrium play at a history that induces beliefs ω. Call this set

U (µ). (This will contain a unique vector unless the Proposer is indifferent between

multiple proposals at ω.)

3. Identify the (set of) Period 1 proposals (x1, x2) with the property that there is some

vector u ∈ U (µ) such that

• if µT
i = 0, then xi ≤ (1− δ) bi + δuTi ,

• if µT
i = 1, then xi ≥ (1− δ) bi + δuTi , and

• if µT
i ∈ (0, 1), then xi = (1− δ) bi + δuTi .

Then the set of Period 1 proposals identified in step (3) have the property that, following any

proposal in that set, there exists a continuation equilibrium involving the Period 1 acceptance

probability vector µ (as well as continuation values that support the equilibrium).

Despite its conceptual simplicity, the application of this algorithm to all µ ∈ M involves quite

a bit of rather tedious - essentially mechanical - work. We relegate these details to the Appendix

and present only one example in the main text, followed by a geometric illustration of the final

result.
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4.3 Period 1 voting 4 MAJORITY RULE

Example

Fix µ = (1, 0, 1, 0). (Both responders vote Y if and only if they are low types.)

1. Beliefs following proposal failure (both vote N) are given by ω = (1, 1). (The Proposer is

sure that both are high types.)

2. The Period 2 proposal can be any mix of (h, 0) and (0, h) (see Figure 1). Therefore, the set

of possible continuation value vectors u = (uL1 , u
H
1 , uL2 , u

H
2 ) is

U (µ) = {(qh, qh, (1− q)h, (1− q)h) : q ∈ [0, 1]}

where q denotes the probability assigned to the Period 2 proposal (h, 0).

3. Given
(
µL
i , µ

H
i

)
= (1, 0), the proposal (x1, x2) must be such that there exists q ∈ [0, 1] such

that

(1− δ) l + δqh ≤ x1 ≤ (1− δ)h+ δqh

(1− δ) l + δ (1− q)h ≤ x2 ≤ (1− δ)h+ δ (1− q)h.

Step (3) yields a condition identifying the set of Period 1 proposals (x1, x2) such that there exists

a continuation equilibrium involving the acceptance probability vector µ = (1, 0, 1, 0). Geometri-

cally, that area A(µ) is the convex hull of six points, obtained by substituting q = 0 and q = 1

into the lower and upper bounds of the intervals identified in step (3):

A(1, 0, 1, 0) = conv


((1− δ) l, l + δτ) , (l + δτ, (1− δ) l) ,

(h, (1− δ) l) , ((1− δ) l, h) ,

((1− δ)h, h) , (h, (1− δ)h)

 .

At different points within this area, the continuation equilibria involve P mixing between (h, 0)

and (0, h) in specific ways in case Period 2 is reached. Details follow from the above inequalities.

(In all cases, P’s expected Period 2 utility is 1− h.)

We can repeat this process for each µ ∈ M , identifying in each case a region in the x1 − x2

proposal space, such that for every proposal (x1, x2) in that region, there exists a continuation

equilibrium involving the acceptance probability vector µ. Details are presented in the Appendix.

As that analysis shows, the areas associated with different µ overlap, meaning that many Period 1

proposals are consistent with multiple continuation equilibria.
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4.3 Period 1 voting 4 MAJORITY RULE

4.3.2 Proposer-preferred continuation equilibria

Given the multiplicity of continuation equilibria following first round proposals, we suggest that

it makes sense to select, for each possible proposal, the continuation equilibrium associated with

the largest expected payoff for the Proposer. This can be justified by imagining that P announces

which proposal she intends to make in Period 2 in case it is reached. If such an announcement

is consistent with a continuation equilibrium, it is credible and the associated expectations are

self fulfilling. The following Lemma implies that this is equivalent to selecting the continuation

equilibrium associated with the largest probability of passage.

Lemma 4. Fix an arbitrary Period 1 proposal (x1, x2). Suppose there exist two continuation

equilibria with acceptance probability vectors µ̂ ̸= µ̃, where µ̂ implies a higher probability of passage.

Then P prefers the continuation equilibrium involving µ̂.

Proof. See Appendix A.3.

It turns out that this selection criterion eliminates all equilibria which involve mixing by either

responder (see Appendix). Figure 2 presents the selected equilibria for the case that τ < τ̂m. Note

that the shape of the areas depicted in this figure depend on the parameter values. For instance,

see the lower two graphs of Figure 2 for variations in δ.

Proposition 1. [Period 1 voting under majority rule] Following any Period 1 proposal (x1, x2),

the continuation equilibria involving the greatest probability of passage involve the following voting

patterns (see Figure 2):

1. Region 1 (close to nothing to both responders): Both responders vote N for sure.

2. Region 2 (small shares to both): One responder votes Y if he is a low type.

3. Region 3 (moderate and similar shares to both): Each responder votes Y if he is a low type.

4. Region 4 (generous share to one / small share to other): One responder votes Y for sure.

5. Region 5 (generous share to one / moderate share to other): One responder votes Y for sure,

the other votes Y if he is a low type.

6. Region 6 (generous shares to both): Both responders vote Y for sure.

Regions with asymmetric voting probabilities consist of three sub-regions: When one responder’s

share is (sufficiently) larger, he is the more likely to vote Y. When offers are (sufficiently) similar,

two equilibria with the same probability of passage coexist.
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4.3 Period 1 voting 4 MAJORITY RULE

Figure 2: Equilibria following Stage 1 Proposal (majority rule)

The figure depicts the equilibria with the largest probability of passage following any Period 1 proposal x1. The
parameter values used are (l = 1

10
, τ = 3

10
, and δ = 1

2
) in the upper picture. In the lower pictures the situation with

δ = 1
6
is depicted on the left and with δ = 5

6
on the right. See Proposition 1 for a description of each of the regions.
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4.4 Period 1 proposal

Having characterized (Proposer-preferred) continuation equilibria following all Period 1 proposals,

we turn to the P’s Period 1 choice of proposal. Note that both the probability that a proposal

passes as well as P’s continuation value in case of failure are constant within each of the regions

depicted in Figure 2. It follows that only proposals that lie at the south west corner or boundary

of a given region can be optimal. Also note that proposals in regions 4, 5, and 6 pass for sure, and

consequently regions 5 and 6 are dominated by the cheapest proposals in Region 4, labeled (B) in

the figures.

It follows that P’s best choice is one of the following four: Offer nothing to both responders

(or any other proposal that fails for sure), offer either responder (1− δ) l and the other nothing

(this passes with probability 1
2), make any offer where x1+x2 = 2 (1− δ) l+ δh and both get more

than l (passes with probability 3
4 , marked (A) in Figure 2), or offer either responder (1− δ)h and

the other nothing (which passes for sure, marked (B)). Comparing these options reveals that either

(A) or (B) are optimal. The following Proposition identifies the conditions under which either is

optimal.

Proposition 2. [Proposer-preferred equilibrium under majority rule] Consider majority rule and

restrict attention to Proposer-preferred continuation equilibria following the first round proposal.

Then,

• If τ < τ̂m or δ > 4h−6l−1
8h−6l−1 : In Period 1, P offers (1 − δ)h to one responder and zero to the

other. The included player votes Y and so this proposal passes immediately. (If the included

player were to vote N, P would offer h to the excluded responder in Period 2.)

• Otherwise: In Period 1, P proposes any (x1, x2) such that x1 + x2 = 2 (1− δ) l + δh, x1 >

(1− δ) l, and x2 > (1− δ) l. Both players vote Y iff they are low and so this proposal passes

with probability 3/4. (If both responders vote N, P will offer one of them h in Period 2.

The probability with which he includes R1 and R2 in this event varies depending on which

responder is offered more in Period 1.)

If δ is small, breakdown is likely and so responder prices depend on breakdown values. If in

addition τ is large, the low type is significantly “cheaper” than the high type. Therefore, the

“risky” option (A), where P makes a small offer to both responders, can be optimal. When δ is

large, breakdown is unlikely, and so the fear of exclusion makes both types similarly cheap. If τ

is small, the prices are similar anyway. Thus, in both cases, P is better off offering one responder

enough to secure his vote for sure.
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Figure 3: Period 2 Proposals (unanimity rule)

The figure depicts the Period 2 proposals that P prefers to make under unanimity rule given arbitrary beliefs about
the responders’ types. The horizontal and vertical axes measure the probability that R1 and R2 are of the high type,
denoted ω1 and ω2 respectively. The left and right panels distinguish the cases where τ is smaller or greater than τ̂u,
which determines the optimal proposal in case ω1 = ω2 = 1

2
. We define ω̄ ≡ h−l

1−h−l
and ω ≡ h−l

1−2l
.

5 Unanimity rule

We now turn to an analysis of unanimity rule, following a similar outline based on backward

induction, beginning with the Period 2 voting stage.

5.1 Period 2 voting and proposals

Lemma 1 applies to unanimity rule as well. Given this, the optimal Period 2 proposal is again

determined by beliefs ω = (ω1, ω2). The formal analysis is presented in Appendix B.1. Figure 3

displays the result.

As under unanimity rule, the qualitative pattern of proposals depends on whether the difference

between the low and high breakdown values exceeds a particular threshold, which we define as

τ̂u ≡ 1− 2l

3
.

The horizontal and vertical boundaries of the areas in these figures are defined by two levels of

beliefs, which we denote ω̄ ≡ h−l
1−h−l and ω ≡ h−l

1−2l . The latter is always strictly smaller than 1
2 (due

to our assumption 2h < 1). The former can be greater or less than 1
2 , thereby determining the

optimal proposal at ω =
(
1
2 ,

1
2

)
, i.e., in case no information is revealed in Period 1. Specifically,

ω̄ < 1
2 iff τ < τ̂u. Therefore, if τ < τ̂u, then P would offer (h, h) if Period 2 were reached without

information being revealed, otherwise she would be indifferent between offering (h, l) or (l, h).
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5.2 Continuation values and beliefs

As in the case of majority rule, the optimal Period 2 proposal and expected payoffs depend on

beliefs ω induced by the prior history.5 The following Lemma summarizes useful facts about these

continuation values.

Lemma 5. In any equilibrium under unanimity rule:

• At any history s, Responder i’s Period 2 expected payoff satisfies

l ≤ uLi (s) ≤ uHi (s) = h.

• Let ŝ and s̃ be two histories which induce beliefs (ω̂i, ω̂−i) and (ω̃i, ω̃−i), respectively. If ω̂i ≥ ω̃i

and ω̂−i = ω̃−i, then uLi (ŝ) ≥ uLi (s̃). That is, low types prefer to be perceived as high types.

Proof. The first part follows from the fact that P will never offer either responder more than h,

and both responders must vote Y for the proposal to pass. To see the second part, look at Figure

3, let i = 1, and hold ω2 constant. If ω2 < ω or ω2 > ω̄, increasing ω1 only affects the Period 2 offer

made to R1, possibly increasing it from l to h, clearly increasing his expected payoff. If ω2 ∈ (ω, ω̄),

increasing ω1 may cause the Proposer to shift from offering (l, h) to offering (h, l). Again, this can

only increase R1’s payoff, as he may end up with h and can never do worse than getting l.

In contrast to majority rule, the set of circumstances under which Period 2 is reached is larger.

In particular, it will be reached whenever at least one player has voted N. Therefore, in addition

to (on path) beliefs about responders who voted N,

ωN
i =

1− µH
i

2− µH
i − µL

i

,

we must consider beliefs about players who voted Y, denoted

ωY
i =

µH
i

µH
i + µL

i

.

Recall that off-path beliefs are fixed by assumption to ωN
i = 1 if µi = (1, 1) and ωY

i = 0 if µi = (0, 0).

5As above, some beliefs ω allow for P to mix between several proposals in Period 2, and so these ω are consistent
with an entire set of proposals and expected payoffs. We will take this into account in the following analysis.
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5.3 Period 1 voting

Fix an arbitrary Period 1 proposal (x1, x2). An immediate consequence of Lemma 5 is that a high

type responder votes Y if and only if he is offered at least h.6 This is in contrast to majority

rule, where a high type responder is willing to accept (1 − δ)h because he expects to be excluded

if Period 2 is reached. Given this, low types must also vote Y if offered h or more.7

Lemma 6. Let (x1, x2) be an arbitrary Period 1 proposal. Then in any equilibrium under unanimity

rule,

1. if xi ≥ h, then µL
1 = µH

1 = 1, and

2. if xi < h, then µH
i = 0.

Proof. See discussion above.

It follows that a proposal that allocates at least h to both responders will pass immediately.

Therefore, what remains to be analyzed is the probability with which low type responders vote

Y on proposals that allocate strictly less than h to at least one responder. Within this set, it is

helpful to consider separately proposals that allocate (at least) h to one responder and less than h

to the other, before considering those which allocate strictly less than h to both.

Without loss of generality, consider a Period 1 proposal of the form (x1, h) with x1 < h. Then

R2 votes Y for sure, making R1 pivotal. It is then straightforward to verify the following.

Lemma 7. [Unanimity rule] Let (x1, x2) be a Period 1 proposal with x2 ≥ h and x1 < h. Then, in

any equilibrium, R2 votes Y irrespective of his type and R1 votes Y only if he is a low type and

x1 ≥

l + δτ if τ < τ̂u

l + δ
2τ if τ > τ̂u

.

Proof. See discussion above.

6Voting Y (N) on less (more) attractive proposals is weakly dominated. Voting Y when offered exactly h is
without loss of generality.

7Suppose R1 votes N with positive probability on such a proposal (only) when his type is low. This is strictly
worse than voting Y if R2 votes Y. (Instead of x1

1 ≥ h, R1 gets at most (1− δ)l+ δh). Suppose R2 votes N. Then the
proposal fails irrespective of R1’s vote. Given that he votes N only when he is a low type, beliefs will be ωN

1 = 0. By
voting Y instead, he would induce the belief ωY

1 > 1
2
, yielding a (weakly) greater continuation payoff. Thus, voting

N is weakly dominated, a contradiction.
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5.3.1 Continuation equilibria when xi1 < h for i = 1, 2

Next, we turn to proposals that allocate strictly less than h to both responders. Then both respon-

ders vote N if they are high types, and what remains to be determined are the probabilities with

which they accept when low. Denote these by µL =
(
µL
1 , µ

L
2

)
.

Mirroring our majority rule analysis, we now describe an algorithm that can be used to fully

characterize the set of continuation equilibria following all first round proposals that allocate strictly

less than h to both responders. Recall that, in contrast to majority rule, Period 2 can now be

reached even in case one responder has voted Y in Period 1. Hence we denote Period 2 continuation

values of a low type responder by u
ViV−i

i = uLi2 ((x1, x2), (V1, V2)). For example, uNY
2 denotes the

continuation value of the low type of R2 given Period 2 has been reached after a N-vote of R2 and

a Y-vote of R1.
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Algorithm to characterize continuation equilibria following Period 1 proposals allo-

cating less than h to both responders (unanimity rule)

Let M = [0, 1]2 be the set of low type acceptance probability vectors µL =
(
µL
1 , µ

L
2

)
. (Recall high

types vote N on all proposals being considered.) For each µL ∈ M ,

1. Identify the belief vectors ωNN =
(
ωN
1 , ωN

2

)
, ωY N =

(
ωY
1 , ω

N
2

)
and ωNY =

(
ωN
1 , ωY

2

)
,

induced by a history in which at least one responder has voted N, where in each case

ωN
i = 1

2−µL
i
and ωY

i = 0.

2. Characterize the (set of) continuation value vectors for low types uL2 =(
uNN
1 , uNN

2 , uY N
1 , uNY

2 , uNY
1 , uY N

2

)
, where for example (uY N

1 , uNY
2 ) is consistent with

Period 2 equilibrium play given beliefs ωY N (after R1 voted Y and R2 voted N). If any

of the belief vectors ωNN , ωY N , or ωNY allows for multiple Period 2 equilibria, there will

exist a set of consistent continuation value vectors, which we denote by U (µ).

3. Identify the (set of) Period 1 proposals (x1, x2) with the property that there is some con-

tinuation value vector uL2 ∈ U (µ) such that:

• if µL
i = 0,

µL
−i

2
xi +

(
1−

µL
−i

2

)[
(1− δ) l + δuY N

i

]
≤ (1− δ) l + δ

[
µL
−i

2
uNY
i +

(
1−

µL
−i

2

)
uNN
i

]
,

where
µL
−i

2 is the probability with which the “other” responder votes Y.

• if µL
i = 1, the inequality is reversed, and

• if µL
i ∈ (0, 1), it holds with equality.

This condition can be conveniently restated as saying that i votes Y as a low type if µL
−i ̸= 0 and

xi ≥ (1− δ) l + δ

[
uNY
i +

2− µL
−i

µL
−i

(
uNN
i − uY N

i

)]

with mixing permitted in case of equality.

We illustrate the application of the algorithm using an example. All other cases are analyzed

in the Appendix.
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Example: Fix µL = (1, 1).

That is, both responders vote Y if and only if they are low types. Any responder voting N reveals

that he is a high type. Thus,

1. Period 2 beliefs are given by ωNN = (1, 1), ωY N = (0, 1) and ωNY = (1, 0).

2. The continuation value vector is uniquely determined as

(
uNN
1 , uNN

2 , uY N
1 , uNY

2 , uNY
1 , uY N

2

)
= (h, h, l, h, h, l) .

3. Given µL
i = 1, the relevant set of Period 1 proposals consists of those satisfying

xi ≥ l + 2δ(h− l) for i = 1, 2

which satisfies xi < h only if δ < 1
2 .

Step (3) gives a condition identifying the set of Period 1 proposals x such that there exists a con-

tinuation equilibrium involving the acceptance probability vector µ = (1, 0, 1, 0). Geometrically,

this set is the following convex hull

A(1, 0, 1, 0) = conv {(h, h) , (l + 2δτ, l + 2δτ) , (l + 2δτ, h) , (h, l + 2δτ)} .

We can repeat this process for each µL ∈ M , resulting in a full characterization of all con-

tinuation equilibria following any Period 1 proposal. Each µL ∈ M is associated with a region

in proposal space such that for each Period 1 proposal in that region, a continuation equilibrium

involving the acceptance probability vector µ = (µL
1 , 0, µ

L
2 , 0) exists. The details of this analysis

are presented in the Appendix.

5.3.2 Continuation equilibria with the largest probability of passage

As in the case of majority rule, the regions associated with different continuation equilibria overlap,

reflecting the multiplicity of equilibria that results from the endogenous signaling effects associated

with each voting pattern. We again resolve this multiplicity by selecting the equilibrium associated

with the largest probability of passage.8 The results are summarized in Proposition 3. Figure 4

8As in the case of majority rule, this assumption can be motivated by imagining that P could make a self-fulfilling
announcement as to her intentions. The argument is complicated slightly by the fact that, under unanimity rule, P
may prefer equilibria associated with a lower probability of passage following certain Period 1 proposals. However,
it can be shown that such proposals are dominated by others, so that our selection criterion is without consequence
for equilibrium play. See Section B.3 in Appendix for a more detailed discussion.
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provides a diagrammatic illustration for the case that τ > τ̂u and δ < µ̄
2 .

Proposition 3. [Period 1 voting under unanimity rule] Assume unanimity rule. Following any

Period 1 proposal (x1, x2), the continuation equilibria involving the greatest probability of passage

involve the following voting patterns (see Figure 4):

1. Region 1 (allocating a small share to at least one responder): Both responders vote N irre-

spective of their type.

2. Region 2 (allocating a small share to one responder and at least h to the other): The responder

offered less votes N, the other votes Y, both irrespective of their type.

3. Region 3 (close to symmetric, allocating moderate shares to both): Each responder votes Y

with probability µ̄ = 3h−l−1
h−l if he is a low type.

4. Region 4 (less symmetric, allocating a moderate share to one and a more generous share to

the other): The responder offered less votes Y with probability µ̄ if he is a low type. The other

votes Y with a larger probability if he is a low type.

5. Region 5 (even less symmetric proposals, allocating a moderate share to one and a generous

share to the other): The responder offered less votes Y with probability µ̄ if he is a low type.

The other votes Y for sure if he is a low type.

6. Region 6 (allocating more than l+ 2δτ to each responder): Each responder votes Y if he is a

low type.

7. Region 7 (allocating a moderate share to one responder and at least h to the other): The

responder offered less votes Y if he is a low type, the other votes Y irrespective of his type.

8. Region 8 (allocating at least h to both responders): Both responders vote Y irrespective of

their type.

These equilibrium areas are ordered in ascending order of the probability of passage.

5.4 Period 1 proposal

Having characterized the continuation equilibria with the largest probability of passage following

all Period 1 proposals, we turn to P’s Period 1 choice of proposal. The probability that a proposal

passes is constant within all the areas depicted in Figure 4, with Region 4 being an exception.9 For

9Region 4 involves both responders mixing between voting Y and N. One responder votes Y with fixed probability
µ̄, the other’s probability varies between (µ̄, 1).
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Figure 4: Equilibria following Stage 1 Proposal (unanimity rule)

The figure depicts the equilibria with the largest probability of passage following any Period 1 proposal x1. The
parameter values used are (l = 1

10
, τ = 2

10
, δ = 1

4
so that τ < τ̂u) in the picture on the left and (l = 1

10
, τ = 1

3
, δ = 1

4

so that τ > τ̂u and µ̄ = 3
5
) in the one on the right.

these areas, it follows that only proposals that lie at the southwest boundary or corner of a given

area can be optimal. It can be shown that the best offer in Region 5 dominates all offers in Region

3 and Region 4, respectively.

Thus P’s optimal Period 1 proposal must be one of the following: A proposal that fails for sure

(Region 1 or 2); a proposal such that one responder votes Y with probability µ̄ as a low type while

the other votes Y for sure as a low type (Region 5); a proposal which both responders support

if and only if they are low (Region 6); buying both responders for sure (point (A)); or point (B)

where one responder is paid enough to secure his vote while the other is offered a smaller share

such that he votes Y if and only if he is low. If τ < τ̂u, it can be shown that option (A) dominates

all other options. If τ > τ̂u, it can be shown that proposal (B) dominates all other proposals.

Proposition 4. [Proposer-preferred equilibrium under unanimity rule] Consider unanimity rule

and restrict attention to the continuation equilibria with the largest probability of passage following

the first round proposal (see Figure 4). Then,

• If τ < τ̂u: In Period 1, P proposes (h, h) and both responders vote Y. (If either responder

votes N, P proposes (h, h) again in Period 2.)
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• If τ > τ̂u: In Period 1, P offers h to one responder, who votes Y for sure, and l + δ
2τ to the

other, who votes Y iff he is low. (If the responder that was offered the smaller share votes

N, he is offered h in Period 2, while the other responder is offered l.)

The intuition underlying this result is as follows. If the difference between high and low breakdown

values, τ , is small, P prefers to pay both responders h to secure immediate agreement. For larger τ ,

P prefers to take a risk by trying to buy one responder “cheap”, securing agreement with probability

1
2 . Even so, P offers the other responder h in order to secure his vote for sure. Doing so not only

increases the probability of passage from 1
4 to 1

2 , it also makes the disadvantaged responder cheaper

because the price for his vote decreases from max {l + 2δτ, h} to l+ δ
2τ if he expects his counterpart

to vote Y for sure rather than only when he is a low type. The reason is that the disadvantaged

responder becomes pivotal, eliminating the negative signaling value of voting Y (as this results in

immediate agreement).10

6 Unanimity vs. Majority Rule

We now turn to a comparison of unanimity and majority rule. Our goal is to make formally precise

the notion that responders are “more expensive” and that immediate agreement is “less likely”

or “more difficult to achieve” under unanimity rule. Such a comparison is complicated by the

fact that the “price” of a responder’s vote depends on several factors, including his expectations

concerning the other responder’s voting behavior. Another complication is that some offers can

induce responders to mix between voting Y and N. In what follows, we use the term “price” to

refer to the amount that a responder must be offered in order to secure his vote, i.e., in order for

him to vote Y with probability 1.

6.1 Period 1 “prices”

Propositions 1 and 3 identify conditions on xi1 such that a low or high type responder i would vote

Y on a proposal in equilibrium, taking the other responder’s voting probabilities as given. For

simplicity, we restrict attention to cases where µ−i reflects a pure strategy, i.e., µ−i =
(
µL
−i, µ

H
−i

)
∈

{(0, 0), (1, 0), (1, 1)}. We define the corresponding “prices” as follows.

10To understand why the threshold determining the equilibrium is exactly τ̂u, consider a Period 1 offer such that
R2 votes Y for sure. Then, R1 anticipates that voting N (inducing a belief (ωN

1 , 1
2
) with ωN

1 > 1
2
) leads to second

period proposal (h, h) or (h, l) depending on whether τ ≶ τ̂u, causing a discreet change in his “price” at that point.
One might expect that P would be more willing to “take a risk” in Period 1 if δ is larger. But the same is true for
the responder, who will perceive a greater signaling value from voting N and so his price goes up. It turns out that
these factors cancel so as to make δ irrelevant.
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Definition 2. Let µ−i ∈ {(0, 0), (1, 0), (1, 1)} be fixed. Then the Period 1 price of a type T

responder under voting rule v ∈ {m,u} is denoted zvT (µ−i), and defined as the smallest value of

xi1 such that µT
i = 1 is consistent with the relevant Proposition 1 or 3.

Under majority rule, each type’s price is actually independent of µ−i, and given by (1 − δ)bi.

That is, zmH (µ−i) = (1 − δ)h and zmL (µ−i) = (1 − δ)l. These prices reflect the fact that P can

credibly announce that she plans to exclude the responder to whom she is making a Period 1 offer

if that responder votes N. When δ → 1, this threat of exclusion looms large and the price of a vote

tends to zero. As δ → 0, the responder’s breakdown value effectively becomes an outside option

and so the price approaches bi.

Under unanimity rule, the high type responder’s price is also independent of µ−i and given by

zuH (µ−i) = h (see Lemma 6). Thus, high types are unambiguously more expensive under unanimity

rule than under majority rule. This reflects the fact that both responders have veto power, so there

is no reason to accept anything less than h.

In contrast, a low type responder’s price under unanimity rule does depend on µ−i. In particular,

zuL (1, 1) =

l + δ
2τ τ > τ̂u

l + δτ τ < τ̂u,

zuL (1, 0) = min
{
l + 2δτ, h

}
,

and

zuL (0, 0) = h.

Note that each of these prices exceeds l and so the low type is also unambiguously more expensive

under unanimity rule than under majority rule. This reflects two circumstances. First, veto power

implies that a payoff of at least l can be guaranteed by simply voting N consistently. Second,

the low type can hope to achieve an even greater payoff if P can be made to believe that he

is a high type. Thus, the low type must be compensated for revealing his type. This signaling

incentive is more relevant the lower is the probability with which the other responder votes Y.

When µ−i = (1, 1), Responder i expects to be pivotal and is “cheaper” than when µ−i = (1, 0), in

which case he expects that Period 2 might be reached even if he votes Y, in which case he would be

“punished” for revealing his type. When µ−i = (0, 0), this signaling incentive is all that is relevant,

and so the low type must pool with the high type, inducing a “price” of h.11

Figure 5 presents responder prices as functions of δ for a given combination of parameter values

11Under unanimity rule, there are also cutoff values above which low type responders mix between voting Y and
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Figure 5: Responders’ Prices

R1’s prices as a function of the continuation probability δ under unanimity rule (solid lines) and majority rule (dashed
lines) given R2’s voting probabilities and given that h = 4

10
and l = 1

10
(i.e., τ > τ̂u). R2 is expected to play a pure

strategy. For instance, zuL(1, 0) is the price of the low type of R1 under unanimity rule given that R2 votes Y if and
only if he is of a low type.

(l = 1
10 and τ = 3

10). As we have noted, majority rule prices (dashed lines) are decreasing in δ, as

the threat of exclusion looms large when breakdown is unlikely. In contrast, unanimity rule prices

(solid lines) increase in δ. This reflects the fact that the positive signaling value of voting N is

more important the more likely it is that P will be able to make a second proposal.

6.2 Probability of Breakdown

In order to assess the efficiency of the two rules, we compare the probability of delay and breakdown.

Under unanimity rule, delay can occur if and only if the two responder types are sufficiently different

(τ > τ̂u). Then, P offers h to one and to the other something that they accept only if they are low.

If the latter rejects, P offers him h in Period 2, and l to the first. In both cases, the disadvantaged

responder accepts with probability 1
2 . Therefore, delay occurs with probability 1

2 in both periods,

and the probability of inefficient breakdown is 1
2

(
1− δ + δ

2

)
= 1

2 − δ
4 . If, on the other hand, the

types are similar (τ < τ̂u), P prefers to offer both responders h in Period 1 and agreement is certain.

Under majority rule, delay can occur if and only if τ > τ̂m and δ < 4h−6l−1
8h−6l−1 . That is, types

are sufficiently different and the probability of breakdown is sufficiently large. (Only) under these

N. These cutoff values are


l + δ

2
τ µ−i = (1, 1)

l + δτ µ−i = (1, 0) ∧ τ > τ̂u

l + 2δτ µ−i = (1, 0) ∧ τ < τ̂u

. Again, each of these “prices” is larger than l and so

unambiguously larger than the low type’s price under majority rule.
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conditions, high types will be significantly more expensive than low types, so that P prefers to

“gamble” by offering both responders something that only low types accept. Thus, delay occurs

with probability 1
4 (if both responders are high types). If the second period is reached, agreement

is certain. Thus, the probability of breakdown is 1−δ
4 . For τ < τ̂m or δ > 4h−6l−1

8h−6l−1 , agreement in

Period 1 is certain under majority rule.

In sum, the probability of a breakdown is larger under unanimity rule under all conditions except

when τ ∈ (τ̂m, τ̂u) (nonempty if l < 1
14 ≈ 0.07) and δ is close enough to 0.12 This result confirms

the central part of the informal argument that motivates our analysis, namely that inefficiencies

due to “tough” bargaining are more likely to occur under unanimity rule than under majority rule.

It is perhaps not surprising that agreement is more difficult to achieve under unanimity rule,

given that P must convince both responders rather than just one. But our analysis reveals an

additional, less obvious point: This is that part of the reason for possible inefficiencies is that

unanimity rule causes responders to become more “expensive”, possibly inducing the Proposer to

take a risk by making a proposal that could fail. Under majority rule, in contrast, even high type

responders will be “cheap” to buy (except under special circumstances) such that P can afford to

make a proposal that will pass for sure.

The generally lower probability of (inefficient) breakdown under majority rule, in combination

with the mostly lower prices for responders, lead to the Proposer being better off under majority

rule than under unanimity rule. Responders in contrast prefer, in most cases, unanimity rule.

While responders can be sure to end up with at least their breakdown value under unanimity rule,

they must fear exclusion under majority rule. Hence, high types certainly prefer unanimity voting.

Low types, in contrast, prefer majority rule if τ ∈ (τ̂u, τ̂m) and δ < 3h−l
h−3l (which is non-empty if

l ∈
(

1
14 ,

1
6

)
). Here, the responder, under unanimity rule, fears breakdown whereas under majority

rule agreement is certain (due to τ ∈ (τ̂u, τ̂m)). In addition, the fear of Period 2 exclusion under

majority rule is low (due to the low δ) so that P ends up making a large Period 1 offer.

12These conditions are extremely restrictive. For instance, if l = 0.05, then we must have τ ∈ (0.275, 0.3) and
δ ≤ 0.06̄ (if τ ≈ 0.3). To get an intuition for this, consider the extreme case of δ = 0 and l = 0. Under both rules, P
compares two types of proposals: Those that pass for sure because she offers both responders enough to secure even
the high type’s vote, and those where she “gambles” by offering at least one responder something he might reject.
If τ > 1

4
, P prefers to take the gamble under majority rule and offer both responders the low type’s price l = 0,

which passes with probability 3
4
(i.e., unless both are high types). Under unanimity rule, however, a similar gamble

is too risky if τ < 3
4
. P needs both responders to vote Y. Thus, even if she offers the low type’s price to only one

of the responders (and buys the other for sure), there is only a 50% chance that the proposal will pass. Therefore,
P prefers to buy both high types under unanimity rule. Thus for these special parameter conditions, delay can only
occur under majority rule.
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7 Discussion

The choice between alternative q-majority rules, including unanimity rule, is a central problem in

constitutional design. Unanimity rule has the attractive property that decisions taken are guaran-

teed to be efficient in the sense that all members prefer the proposed change relative to the status

quo. A potential disadvantage is that agreement might be more difficult to reach under unanimity

rule even if it is efficient. This is because, even when all members of a group can potentially

benefit, each individual member may have an incentive to overstate their opposition, in an attempt

to secure a larger share of the surplus that results from agreement. Arguments along these lines

have been made informally, among others by Buchanan and Tullock (1965). The goal of the present

paper was to provide an explicit formalization of this argument in a multilateral bargaining game

with private information.

Our central results confirm the informal argument that unanimity rule creates incentives to “act

tough” and thereby makes agreement more difficult to achieve. In general, the prices necessary to

secure a responder’s vote are higher under unanimity rule than under majority rule, ceteris paribus.

The main reason for this is that voting N carries a positive “signaling value” under unanimity

rule, while it is discouraged through the threat of subsequent exclusion under majority rule. The

combination of higher prices and the need to secure more votes implies that the proposer will more

often choose to risk delay and breakdown under unanimity rule, resulting in a larger probability

of inefficient disagreement. In addition to confirming the informal argument outlined above, the

formal analysis yields additional insights into the underlying incentives and the properties of optimal

strategies.

For example, the analysis yields interesting comparative statics with respect to the continuation

probability δ. Under unanimity rule, the high type’s price always corresponds to his breakdown

value, since he can veto any other outcome. The low type’s price, however, is larger than his

breakdown value and increases in δ. This is because acting “tough” is both less costly and more

beneficial if the next period is reached with a larger probability following proposal failure. Under

majority rule, in contrast, responders’ prices are generally lower than their breakdown values and

decreasing in δ, and indeed approach zero as δ approaches 1. The intuition is that acting “tough”

becomes counterproductive if Period 2 is likely to be reached, as the “tough” responder will simply

be excluded from the Period 2 coalition.

Another insight concerns strategic complementarities in responders’ voting choices. Under una-

nimity rule, a responder is more willing to vote Y (in the sense that his price is lower) the higher

the probability that the other responder votes Y, in which case his own vote becomes pivotal. The

reason is that voting Y carries a negative signaling value in case the proposal fails. The more likely
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it is that the other responder votes Y, the less relevant this becomes.13 This translates into an

incentive for the proposer to offer one responder enough to secure his vote for sure, thereby making

the other responder pivotal and consequently “cheap”.14 Interestingly, the opposite is true under

majority rule. Here, a responder is less willing to agree (his price is higher) the more likely the

other responder is to vote Y.15

Finally, our analysis will be of interest to researchers working on formal approaches to bargain-

ing and voting with private information. We were surprised by the the rich complexity that we

encountered in analyzing a model that might appear quite simple at first sight. (Three players, a

fixed proposer, only two types, and two rounds of negotiation.) It would be interesting to extend

the analysis to more players, types, and longer / infinite time horizon. However, this is beyond the

scope of our paper, and indeed our analysis might serve as caution that such a model may become

intractable.

13There is one exception to this pattern: For a small interval of τ , R1’s price is lower if R2 mixes with a certain
probability µL

2 when low than if R2 votes Y for sure when low. The reason is that if R2 votes Y if low, then in
Period 2 after (N,N ) P will offer the high share to both responders. This makes voting N more attractive compared
to the case where P offers the high share only to R1 (and thus the Period 2 proposal only passes if R2 is low) - as in
the case with µL

2 < µ̄. For this to hold we need µL
2 ∈ ( 1

2
, µ̄) and thus τ > 2−4l

5
(so that µ̄ > 1

2
).

14In a model involving a larger number of players, this may translate into an interesting trade-off: P will wish
to offer a sufficiently large number of responders large enough shares to secure their certain agreement such that
the remaining responders are sufficiently convinced that agreement is likely so as to make their votes pivotal, and
therefore “cheap”.

15The reasons underlying this effect are subtle and have to do with the beliefs formed in case the first round proposal
fails. There, the precise way this plays out is specific to the three player case. The general insight is that under
majority rule, responders are more likely to accept if they believe that they will be excluded from a future coalition.
This threat of exclusion, in turn, will be more credible if other responders are not induced to signal their types,
i.e., if P offers them something such that they vote either Y or N irrespective of their type. It appears potentially
interesting to investigate in more detail the implications of this for the design of optimal proposals in larger groups.
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A Majority rule

A.1 Period 2 proposal (majority rule)

Consider any history preceding the Period 2 proposal stage, and let the corresponding beliefs be

given by (ω1, ω2). Suppose without loss of generality that ω1 ≤ ω2. By Lemma 1, x2 = (h, 0)

and x2 = (0, h) pass for sure, both yielding a Proposer payoff of 1 − h. x2 = (l, l) passes with

probability (1 − ω1ω2), yielding (1 − ω1ω2) (1− 2l). x2 = (l, 0) dominates x2 = (0, l), and passes

with probability (1 − ω1), yielding (1− ω1) (1− l). Comparing these options establishes that the

optimal Period 2 proposal is given by

x2 (ω1, ω2) =


(h, 0) or (0, h) if ω1 >

h−l
1−l and ω1ω2 >

h−2l
1−2l

(l, 0) if ω1 <
h−l
1−l and

1−ω1
1−ω1ω2

> 1−2l
1−l

(l, l) if ω1ω2 <
h−2l
1−2l and

1−ω1
1−ω1ω2

< 1−2l
1−l

It is informative to consider the optimal proposal for ω =
(
1
2 ,

1
2

)
, i.e., following any history in which

no information has been revealed:

x2

(
1

2
,
1

2

)
=

(h, 0) or (0, h) if τ < 1+2l
4

(l, l) otherwise

A.2 Period 1 voting (majority rule)

We use the algorithm described in the main text to characterize the (set of) continuation equilibria

following arbitrary Period 1 proposals that allocate less than h to both responders. The algorithm

involves identifying, for each acceptance probability vector µ consistent with Lemma 3, the set of

Period 1 offers x1 such that a continuation equilibrium involving the acceptance probabilities µ

exists. The set of offers for which this is true will typically be characterized by a set of inequalities.

In some cases, these inequalities will involve parameters reflecting alternative mixing probabilities

for offers made in Period 2. The set of proposals x1 which can satisfy the inequalities for some set of

feasible parameters constitutes an area in Period 1 proposal space, which we will denote by A (µ).

As we will see, A(µ) will typically be the convex hull of a set of points obtained by identifying the

largest and smallest values that these parameters can take.

Acceptance vector µ = (0, 0, 0, 0) Then (1) beliefs following failure are ω =
(
1
2 ,

1
2

)
. For step

(2), we must make a case distinction:
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A.2 Period 1 voting (majority rule) A MAJORITY RULE

(2a) If τ < τ̂m: The Period 2 proposal is any mix between (h, 0) and (0, h). Let ρ denote the

probability that P proposes (h, 0). Then the set of possible continuation values is U (µ) =

{(ρh, ρh, (1− ρ)h, (1− ρ)h) : ρ ∈ [0, 1]}. Then (3a) to support µ, there must exist ρ ∈ [0, 1]

such that

x1 ≤ (1− δ)l + δρh

x2 ≤ (1− δ)l + δ(1− ρ)h

The area for which such a ρ exists can be characterized by first considering the extreme cases

ρ = 0 and ρ = 1. The first implies that x1 ∈ [0, (1 − δ)l] and x2 ∈ [0, (1 − δ)l + δh]. These

conditions describe the convex hull of the four points (0, 0), (0, (1 − δ)l + δh), ((1 − δ)l, 0),

((1−δ)l, (1−δ)l+δh)). The second case (ρ = 1) is symmetric, requiring x1 ∈ [0, (1−δ)l+δh]

and x2 ∈ [0, (1−δ)l], satisfied within the convex hull of the four points (0, 0), ((1−δ)l+δh, 0),

(0, (1−δ)l), ((1−δ)l+δh), (1−δ)l). Next, we can imagine varying ρ between 0 and 1, tracing

out the convex hull off all points identified thus far. Note that (0, (1− δ)l) itself is in between

(0, 0) and (0, (1 − δ)l + δh), and similarly for ((1 − δ)l, 0). And the point (0, 0) appeared in

both cases. Thus of the eight points identified, three are redundant. The area we are looking

for is thus the convex hull of five points:

A(0, 0, 0, 0) = conv{(0, 0) , (0, (1− δ)l + δh) , ((1− δ)l, (1− δ)l + δh) ,

((1− δ)l + δh, (1− δ)l) , ((1− δ)l + δh, 0)}.

Similar reasoning can be applied to each of the cases we will consider in what follows, and we

will not spell out all details each time.

(2b) If τ > τ̂m: The Period 2 proposal is (l, l). Therefore the continuation values are uniquely

determined as

u =

(
l,
l + h

2
, l,

l + h

2

)
(Low types will vote Y in Period 2, high types will vote N and expect the other to vote Y

with prob 1
2 .) Then (3b), to support µ, the proposal must satisfy

xi ≤ l for i = 1, 2
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A.2 Period 1 voting (majority rule) A MAJORITY RULE

and so the corresponding area is

A(0, 0, 0, 0) = conv {(0, 0) , (0, l) , (l, l) , (l, 0)} .

Acceptance vector µ = (1, 0, 0, 0) Then (1) beliefs following Period 1 proposal failure are

ω =
(
1, 12
)
. (2) The Period 2 proposal is any mix between (h, 0) and (0, h). Therefore, U (µ) =

{(qh, qh, (1− q)h, (1− q)h) : q ∈ [0, 1]}. Then (3) to support µ, there must exist q ∈ [0, 1] such that

(1− δ)l + δqh ≤ x1 ≤ (1− δ)h+ δqh

x2 ≤ (1− δ)l + δ(1− q)h.

The corresponding area is

A(1, 0, 0, 0) = conv{((1− δ)l, 0) , ((1− δ)l, (1− δ)l + δh) ,

((1− δ)h, (1− δ)l + δh) , (h, (1− δ)l) , (h, 0)}.

Acceptance vector µ = (1, 1, 0, 0) (1) Period 2 beliefs are ω = (1, 12). (2) Again U (µ) =

{(qh, qh, (1− q)h, (1− q)h) : q ∈ [0, 1]}. (3) Given µ there exists q ∈ [0, 1] such that

x1 ≥ (1− δ)h+ δqh

x2 ≤ (1− δ)l + δ(1− q)h.

The corresponding area is

A(1, 1, 0, 0) = conv{((1− δ)h, 0) , ((1− δ)h, (1− δ)l + δh) ,

(1− (1− δ) l − δh, (1− δ) l + δh) , (1, 0)}.

Acceptance vector µ = (1, 0, 1, 1) (1) Beliefs following failure are ω = (1, 1) (R2’s N-vote is

“unexpected”). Again (2) U (µ) = {(qh, qh, (1− q)h, (1− q)h) : q ∈ [0, 1]}. (3) Given µ there exists

q ∈ [0, 1] such that

(1− δ)l + δqh ≤ x1 ≤ (1− δ)h+ δqh

(1− δq)h ≤ x2.
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The corresponding area is

A(1, 0, 1, 1) = conv{((1− δ)l, h) , ((1− δ) l, 1− (1− δ) l) ,

(h, 1− h) , (h, (1− δ)h) , ((1− δ)l + δh, (1− δ)h)}.

Acceptance vector µ = (1, 1, 1, 1): (1) Period 2 beliefs are ω = (1, 1). (2) Again U (µ) =

{(qh, qh, (1− q)h, (1− q)h) : q ∈ [0, 1]}. (3) Given µ there exists q ∈ [0, 1] such that

x1 ≥ (1− δ)h+ δqh

x2 ≥ (1− δq)h

The corresponding area is

A(1, 1, 1, 1) = conv {((1− δ)h, h) , ((1− δ)h, 1− (1− δ)h) , (1− (1− δ)h, (1− δ)h) , (h, (1− δ)h)} .

Acceptance vector µ = (1, 0, 1, 0): This was covered as an example in the main text.

Acceptance vectors that involve one responder mixing These are: µ = (µL
1 , 0, 0, 0), µ =

(µL
1 , 0, 1, 1), µ = (µL

1 , 0, 1, 0) and µ = (1, µH
1 , 0, 0), µ = (1, µH

1 , 1, 1), µ = (1, µH
1 , 1, 0).

Acceptance vector µ = (µL
1 , 0, 0, 0) with µL

1 ∈ (0, 1) Then (1) Period 2 beliefs are ω =(
1

2−µL
1
, 12

)
. For step (2), we need to make a case distinction:

(2a) If τ < τ̂M or
[
1
2 > h−l

1−l and ω1/2 > h−2l
1−2l

]
: The Period 2 proposal is any mix between (h, 0)

and (0, h). Therefore U (µ) = {(qh, qh, (1− q)h, (1− q)h) : q ∈ [0, 1]}. Then (3a) to support

µ there must exist q ∈ [0, 1] such that

x1 = (1− δ)l + δqh

x2 < (1− δ)l + δ(1− q)h.

The corresponding area is

A(µL
1 , 0, 0, 0) = conv{((1− δ) l, 0) , ((1− δ) l, (1− δ) l + δh) ,

((1− δ) l + δh, (1− δ) l) , ((1− δ) l + δh, 0)}.

Note that A(µL
1 , 0, 0, 0) ⊂ A(1, 0, 0, 0).
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(b) Otherwise, the Period 2 proposal is (l, l) and so continuation values are uniquely determined

as

u =

(
l,
l + h

2
, l,

l + h

2

)
Therefore, given µ we have

x1 = l

x2 < l.

The corresponding area is the line segment

A(µL
1 , 0, 0, 0) = conv {(l, 0) , (l, l)} .

Again, it can be shown that, given τ > τ̂m, A(µL
1 , 0, 0, 0) ⊂ A(1, 0, 0, 0).

In both cases, A(µL
1 , 0, 0, 0) ⊂ A(1, 0, 0, 0). Thus, each point x1 that admits continuation equilibria

involving µ = (µL
1 , 0, 0, 0) with µL

1 ∈ (0, 1) also admits a continuation equilibrium involving µ =

(1, 0, 0, 0).

Acceptance vector µ = (µL
1 , 0, 1, 1) (1) Period 2 beliefs are ω =

(
1

2−µL
1
, 1
)
. (2) Again U (µ) =

{(qh, qh, (1− q)h, (1− q)h) : q ∈ [0, 1]}. (3) Given µ there exists q ∈ [0, 1] such that

x1 = (1− δ)l + δqh

x2 > (1− δq)h.

The corresponding area is

A(µL
1 , 0, 1, 1) = conv{((1− δ) l, h) , ((1− δ) l, 1− (1− δ) l) ,

((1− δ) l + δh, 1− (1− δ) l − δh) , ((1− δ) l + δh, (1− δ)h)}.

Acceptance vector µ = (µL
1 , 0, 1, 0) (1) Period 2 beliefs are ω =

(
1

2−µL
1
, 1
)
. (2) Again U (µ) =

{(qh, qh, (1− q)h, (1− q)h) : q ∈ [0, 1]}. (3) Given µ there exists q ∈ [0, 1] such that

x1 = (1− δ)l + δqh

(1− δ)l + δ(1− q)h ≤ x2 ≤ (1− δq)h.
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The corresponding area

A(µL
1 , 0, 1, 0) = conv{((1− δ)l, (1− δ)l + δh) , ((1− δ)l, h) ,

((1− δ)l + δh, (1− δ)h) , ((1− δ)l + δh, (1− δ)l)}.

Acceptance vector µ = (1, µH
1 , 0, 0) (1) Period 2 beliefs are ω =

(
1, 12
)
. (2) Again U (µ) =

{(qh, qh, (1− q)h, (1− q)h) : q ∈ [0, 1]}. (3) Given µ there exists q ∈ [0, 1] such that

x1 = (1− δ)h+ δqh

x2 ≤ (1− δ)l + δ(1− q)h.

The corresponding area is

A(1, µH
1 , 0, 0) = conv {(0, (1− δ) l) , (h, (1− δ)l) , ((1− δ)h, (1− δ)l + δh) , ((1− δ)h, 0)} .

Acceptance vector µ = (1, µH
1 , 1, 1) (1) Period 2 beliefs are ω = (1, 1). (2) Again U (µ) =

{(qh, qh, (1− q)h, (1− q)h) : q ∈ [0, 1]}. (3) Given µ there exists q ∈ [0, 1] such that

x1 = (1− δ)h+ δqh

x2 ≥ (1− δq)h.

The corresponding area is

A(1, µH
1 , 1, 1) = conv {((1− δ)h, h) , ((1− δ)h, 1− (1− δ)h) , (h, 1− h) , (h, (1− δ)h)} .

Acceptance vector µ = (1, µH
1 , 1, 0) (1) Period 2 beliefs are ω = (1, 1). (2) Again U (µ) =

{(qh, qh, (1− q)h, (1− q)h) : q ∈ [0, 1]}. (3) Given µ there exists q ∈ [0, 1] such that

x1 = (1− δ)h+ δqh

(1− δ)l + δ(1− q)h ≤ x2 ≤ (1− δq)h.

The corresponding area is

A(1, µH
1 , 1, 0) = conv {((1− δ)h, (1− δ)l + δh) , ((1− δ)h, h) , (h, (1− δ)h) , (h, (1− δ)l)} .
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Voting profiles where both responders are mixing These cases are µ = (µL
1 , 0, µ

L
2 , 0),

µ = (1, µH
1 , µL

2 , 0), and µ = (1, µH
1 , 1, µH

2 ).

Acceptance vector µ = (µL
1 , 0, µ

L
2 , 0) (1) Period 2 beliefs are ω =

(
1

2−µL
1
, 1
2−µL

2

)
. (2) Case

distinctions:

(2a) If τ < τ̂M or
[
min {ω1, ω2} > h−l

1−l and ω1ω2 >
h−2l
1−2l

]
:

Again U (µ) = {(qh, qh, (1− q)h, (1− q)h) : q ∈ [0, 1]}. Then (3a) given µ there exists q ∈

[0, 1] such that

x1 = (1− δ)l + δqh

x2 = (1− δ)l + δ(1− q)h.

The corresponding area is

A(µL
1 , 0, µ

L
2 , 0) = conv {((1− δ)l, (1− δ)l + δh) , ((1− δ)l + δh, (1− δ)l)} .

(2b) Otherwise, the Period 2 proposal is (l, l) and so the continuation values are uniquely deter-

mined as

u =

(
l,
l + h

2
, l,

l + h

2

)
.

Then (3b) to support µ, x1 must satisfy

x1 = x2 = l.

The corresponding area is just a single point:

A(µL
1 , 0, µ

L
2 , 0) = (l, l) .

Acceptance vector µ = (1, µH
1 , µL

2 , 0) (1) Period 2 beliefs are ω =
(

1
2−µL

2
, 1
)
. (2) Again U (µ) =

{(qh, qh, (1− q)h, (1− q)h) : q ∈ [0, 1]}, and (3) there exists q ∈ [0, 1] such that

x1 = (1− δ)h+ δqh

x2 = (1− δ)l + δ(1− q)h.
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The corresponding area is

A(1, µH
1 , µL

2 , 0) = conv {((1− δ)h, (1− δ)l + δh) , (h, (1− δ)l)} .

Acceptance vector µ = (1, µH
1 , 1, µH

2 ) (1) Period 2 beliefs are ω = (1, 1). (2) Again U (µ) =

{(qh, qh, (1− q)h, (1− q)h) : q ∈ [0, 1]}, and (3) there exists q ∈ [0, 1] such that

x1 = (1− δ)h+ δqh

x2 = (1− δ)h+ δ(1− q)h.

The corresponding area is

A(1, µH
1 , 1, µH

2 ) = conv {((1− δ)h, h) , (h, (1− δ)h)} .

A.3 Proof of Lemma 4

Let uP = 1 − x1 − x2 denote P’s utility from immediate passage of the proposal. Denote by p̃

and p̂ the probabilities of passage associated with µ̃ and µ̂, respectively. Similarly, let ũF and ûF

denote P’s expected utilities following proposal failure in the corresponding continuation equilibria.

Note that p̃ < p̂ ≤ 1 and so the “tilde” equilibrium involves a positive probability of proposal

failure. Assume (seeking a contradiction) that P prefers the “tilde” equilibrium. Then we have

p̃uP + (1− p̃) ũF ≥ p̂uP + (1− p̂) ûF , or equivalently

(1− p̃) ũF − (1− p̂) ûF ≥ (p̂− p̃)uP > 0.

Suppose that ûF ≥ ũF . Then

(p̂− p̃) ũF = (1− p̃) ũF − (1− p̂) ũF ≥ (1− p̃) ũF − (1− p̂) ûF ≥ (p̂− p̃)uP ,

thus ũF ≥ uP , i.e., P weakly prefers that her proposal fails in the “tilde” equilibrium. In that

equilibrium, the Period 2 proposal is either (a) one of (h, 0) and (0, h) or (b) (l, l) or (c) a

mixture between all three (see Figure 1 and recall that Period 2 beliefs following failure will always

satisfy ωi ≥ 1
2).

In case (a) the Period 2 proposal allocates h to one responder and passes for sure, thus continua-

tion values satisfy uH1 +uH2 = h. Since the equilibrium involves a positive probability of failure, both

responders must vote N in Period 1 when high. Thus xi < (1− δ)h+ δuiH for i = 1, 2. Therefore,
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x1 + x2 < 2(1− δ)h+ δ(uH1 + uH2 ) = 2(1− δ)h+ δh. Then uP = 1− x1 − x2 > 1− 2(1− δ)h− δh.

Moreover ũF = δ(1− h). Thus ũF ≥ uP requires δ(1− h) > 1− 2(1− δ)h− δh, which is equivalent

to 2h > 1, a contradiction.

Case (b) can occur only if τ > τ̂m and µ̃il < 1 for i = 1, 2 (see Figure 1). Given that P offers

(l, l) in Period 2, low type responders would vote Y for sure if xi > l. Thus x1 + x2 ≤ 2l. Hence

uP = 1 − x1 − x2 ≥ 1 − 2l > δ(1 − 2l) > ũF , where the last inequality follows from the fact that

(l, l) passes with probability less than one in Period 2. Thus uP > ũF , a contradiction.

Case (c) can only occur if P is indifferent between (h, 0), (0, h), and (l, l) in Period 2, implying

2l < h and ũF = δ (1− h). Note that each Period 2 proposal will pass if at least one responder is

low, and thus u1+u2 ≤ max{2l, h} = h. P’s Period 2 indifference also implies that µ̃iL < 1, and so

xi ≤ (1− δ)l + δuLi , for i = 1, 2. Therefore, x1 + x2 ≤ (1− δ)2l + δ (u1 + u2) ≤ (1− δ)2l + δh < h,

and so uP = 1− (x1 + x2) ≥ 1− h > δ (1− h) = ũF , a contradiction.

It follows that ũF > ûF . Then the Period 2 proposal in the “tilde” equilibrium is (l, l) for sure.

(To see this, note that ûF ≥ δ(1−h) because P can never do worse than offering h to one responder.

Thus the only way to achieve ũF > ûF is to offer (l, l).) As in case (b), it follows that µ̃iL < 1 and

x1 + x2 ≤ 2l. Hence uP = 1− x1 − x2 ≥ 1− 2l. Further, ũF = δ (1− 2l)
(
1− 1

2−µ̃1l

1
2−µ̃2l

)
. Since P

could offer (l, l) in Period 2 in the “hat” equilibrium, we must have ûF ≥ δ (1− 2l)
(
1− 1

2−µ̂1l

1
2−µ̂2l

)
.

Next, it is easy to verify that the probability of Period 1 agreement in the “tilde” equilibrium is

p̃ = 1 − (2−µ̃1l)(2−µ̃2l)
4 and that therefore (1 − p̃)ũF =

(
3
4 − p̃

)
δ (1− 2l).16 Similarly (1 − p̂)ûF ≥

16The probability of Period 1 agreement is the probability that not both responders vote N:

p = 1−
[
1

2
+

1− µL
1

2

] [
1

2
+

1− µL
2

2

]
= 1−

[
2− µL

1

2

] [
2− µL

2

2

]
and thus

(1− p)

(
1− 1

2− µL
1

1

2− µL
2

)
=

(2− µ̃1l) (2− µ̃2l)

4

(
1− 1

2− µL
1

1

2− µL
2

)
=

(2− µ̃1l) (2− µ̃2l)

4
− 1

4

= 1− p̃− 1

4
=

3

4
− p
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(
3
4 − p̂

)
δ (1− 2l). Hence

(1− p̃) ũF − (1− p̂) ûF ≤
[(

3

4
− p̃

)
−
(
3

4
− p̂

)]
δ (1− 2l)

= (p̂− p̃) δ (1− 2l)

< (p̂− p̃)uP .

Thus (p̂− p̃)uP > (1− p̃) ũF − (1− p̂) ûF , a contradiction.

B Unanimity rule

B.1 Period 2 proposal (unanimity rule)

Suppose without loss of generality that ω1 ≤ ω2. It can be shown that the optimal Period 2 proposal

is given by

x2 (ω1, ω2) =


(l, l) if ω2 <

τ
1−2l

(h, h) if ω1 >
τ

1−l−h

(l, h) if ω2 >
τ

1−2l and ω1 <
τ

1−l−h

.

B.2 Period 1 voting (unanimity rule)

We apply the algorithm described in the main text to characterize continuation equilibria following

Period 1 proposals allocating strictly less than h to both responders. Recall that high types vote N

an all such proposals. Thus, all acceptance probability vectors are of the form µ =
(
µL
1 , 0, µ

L
2 , 0
)
.

We therefore focus on low type acceptance probability vectors (µL
1 , µ

L
2 ) ∈ [0, 1]2.

Acceptance vector µL = (0, 0) It is easy to see that this is consistent with any proposal that

allocates strictly less than h to both responders.

Acceptance vector µL =
(
µL
1 , 0
)
with µL

1 ̸= 0 Then we have (2) ωNN =
(

1
2−µL

1
, 12

)
, ωY N =(

0, 12
)
and ωNY = (1, 0), and (3) the relevant continuation values are uY N

1 = l and uNN
1 = h if

τ < τ̂u, and uNN
1 = h+l

2 if τ > τ̂u. But (4) µL
1 > 0 requires (given µL

2 = 0) uY N
1 ≥ uNN

1 , a

contradiction. Thus such acceptance probability vector are not consistent with any proposal. (The

intuition is that when R2 votes N for sure, the proposal will fail anyway and so R1 cannot possibly

accept, since all this does is reveal his low type.)

We can summarize the previous two observations as follows.
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Lemma 8. Certain rejection by both responders constitutes a continuation equilibrium following

any Period 1 proposal that allocates strictly less than h to both responders. All other equilibria

involve both players voting Y with positive probability as low types.

The corresponding area of Period 1 proposals x1 such that there exists a continuation equilib-

rium involving the acceptance probability vectors µL = (0, 0, 0, 0) thus is

A(0, 0, 0, 0) = conv {(0, 0) , (0, h) , (h, h) , (h, 0)} .

Acceptance vector µL = (1, 1) This was presented as an example in the main text. We showed

there that such continuation equilibria exist if

xi ≥ l + 2δ(h− l) for i = 1, 2

which is consistent with xi < h only if δ < 1
2 . If so, these equilibria exist within

A(1, 0, 1, 0) = conv {(l + 2δ(h− l), l + 2δ(h− l)) , (l + 2δ(h− l), h) , (h, h) , (h, l + 2δ(h− l))} .

Profiles involving mixing To analyse profiles involving mixing, it will be convenient to sepa-

rately consider the cases τ < τ̂u and τ > τ̂u. The first of these is simple because the Period 2

proposal will always allocate h to a responder who voted N in Period 1, and l to a responder who

voted Y. As we will see, the area in which mixed equilibria exist is then identical to the area in

which the µL = (1, 1) equilibrium exists. This will imply that we can disregard these equilibria

later in our analysis.

Assume τ < τ̂u and consider µL = (µL
1 , 1) with µL

1 ∈ (0, 1). Then (1) ωNN =
(
ωN
1 , 1

)
, ωY N =

(0, 1) and ωNY =
(
ωN
1 , 0

)
where ωN

1 > ω̄, so that P offers h or l in Period 2 depending on whether a

responder voted N or Y, and that proposal passes. Thus (2)
(
uNN
1 , uNN

2 , uY N
1 , uNY

2 , uNY
1 , uY N

2

)
=

(h, h, l, h, h, l). Then (3) µL
1 ∈ (0, 1) requires that

x1 = l + 2δ(h− l)

and µL
2 = 1 requires that

x2 ≥ l +
2δ

µL
1

(h− l) .
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For x2 ≤ h we need µL
1 > 2δ, requiring δ < 1

2 . If so, such equilibria exist for each µL
1 ∈ (2δ, 1). For

each such value, the equilibria exist within a line segment

A(µL
1 , 0, 1, 0) = conv

{(
l + 2δ(h− l), l +

2δ

µL
1

(h− l)

)
, (l + 2δ(h− l), h)

}
.

Given µL
1 ∈ (2δ, 1), this line segment is a subset of the one connecting (l + 2δ(h− l), l + 2δ (h− l))

and (l + 2δ(h− l), h). At each point strictly inside that line segment, there are multiple such

equilibria, involving µL
1 ∈

[
2δ
(

h−l
x2−l

)
, 1
)
. Note that this line segment is exactly equal to the

left boundary to the (closed) area in which the µL = (1, 1) equilibrium exists. Thus, for each

µL
1 ∈ (2δ, 1), A(µL

1 , 0, 1, 0) ⊂ A(1, 0, 1, 0).

Assume τ < τ̂u and consider µL = (µL
1 , µ

L
2 ) with both µL

i ∈ (0, 1). Then, (1) ωNN =(
ωN
1 , ωN

2

)
, ωY N =

(
0, ωN

2

)
and ωNY =

(
ωN
1 , 0

)
where both ωN

i > ω̄. Any responder voting N (Y) is

offered h (l) in Period 2, and that proposal will pass. So (2)
(
uNN
1 , uNN

2 , uY N
1 , uNY

2 , uNY
1 , uY N

2

)
=

(h, h, l, h, h, l) and hence (3) µL
i ∈ (0, 1) requires

xi = l +
2δ

µ−iL
(h− l) .

This is less than h iff µ−iL > 2δ, requiring δ < 1
2 . If so, equilibria involving the responders to vote

Y with fixed probabilities µL
1 ∈ (2δ, 1) and µL

2 ∈ (2δ, 1) only exist at

A(µL
1 , 0, µ

L
2 , 0) =

(
l +

2δ

µL
1

(h− l) , l +
2δ

µL
1

(h− l)

)
.

Consequently, equilibria of this type (when varying the voting Y probabilities over the interval

(2δ, 1)) exist within conv {(l + 2δ(h− l), l + 2δ(h− l)) , (l + 2δ(h− l), h) , (h, h) , (h, l + 2δ(h− l))}.

At each point within this area, µL
i = 2δ

(
h−l

x−i−l

)
. Note that this is decreasing in the share allocated

to the other responder, approaching 1 for x−i close to l + 2δ (h− l) and approaching 2δ as x−i

approaches h. Note that this rectangle is identical to A(1, 0, 1, 0) and thus, for all combinations of

µL
1 ∈ (2δ, 1) and µL

2 ∈ (2δ, 1), A(µL
1 , 0, µ

L
2 , 0) ⊂ A(1, 0, 1, 0).

Assume from now on that τ > τ̂u In this case, it is useful to define a specific acceptance

probability, denoted

µ̄ = 1− 1− 2h

h− l
=

3h− l − 1

h− l
,

with the property that if µL
i = µ̄, then ωiN = ω̄ = h−l

1−h−l . This is relevant because the Period 2

proposals following failure depend on whether ωiN ⪋ ω̄. (See right panel of Figure 4.)

42



B.2 Period 1 voting (unanimity rule) B UNANIMITY RULE

Acceptance vector µL =
(
µL
1 , 1
)
with µL

1 ∈ (µ̄, 1) Then the analysis is the same as for τ < τ̂u,

above, except that an additional condition is that µL
1 must be larger than µ̄. That is, such equilibria

exist iff δ < 1
2 . If so , they exist within

A(µL
1 , 0, 1, 0) = conv

{(
l + 2δ(h− l), l +

2δ

µL
1

(h− l)

)
, (l + 2δ(h− l), h)

}
.

At each point along this line, there are multiple such equilibria, with µL
1 ∈

[
max

{
µ̄, 2δ

(
h−l
x2−l

)}
, 1
)
.

Again, for each µL
1 ∈ (max {µ̄, 2δ} , 1), A(µL

1 , 0, 1, 0) ⊂ A(1, 0, 1, 0).

Acceptance vector µL = (µ̄, 1) Then (1) ωNN =
(
ωN
1 , 1

)
, ωY N = (0, 1) and ωNY =

(
ωN
1 , 0

)
,

where ωN
1 = 1

2−µL
1
= ω̄. Following NN, P is indifferent between (l, h) and (h, h). Suppose in this

case P offers (h, h) with probability ρ and (l, h) with 1− ρ. Then (2)

(
uNN
1 , uNN

2L , uY N
1 , uNY

2 , uNY
1 , uY N

2

)
= (l + ρ(h− l), h− 1− ρ

2− µL
1

(h− l), l, h, h, l)

Then (3) µL
1 = µ̄ ∈ (0, 1) requires

x1 = l + δ (1 + ρ) (h− l)

and µL
2 = 1 requires

x2 ≥ l + δ

[
1 + ρ

µ̄

]
(h− l)

This type of equilibrium exists within the line connecting
(
l + δ (1 + ρ) (h− l), l + δ

[
1+ρ
µ̄

]
(h− l)

)
and (l + δ (1 + ρ) (h− l), h). Such line segment exists if δ (1 + ρ) < µ̄, requiring µ̄ > δ. If so, then

every ρ satisfying ρ < µ̄−δ
δ will be associated with such a line segment. At ρ = 0, it connects

the points
(
l + δ(h− l), l + δ

µ̄(h− l)
)
and (l + δ(h− l), h). At ρ = µ̄−δ

δ , it collapses down to the

single point (l + µ̄(h− l), h). As ρ varies between these extremes, we obtain a triangle and thus

the equilibrium exists within

A(µ̄, 0, 1, 0) = conv

{(
l + δ(h− l), l +

δ

µ̄
(h− l)

)
, (l + δ(h− l), h) , (l + µ̄(h− l), h)

}
.

At each point within this area, the associated equilibrium involves ρ = 1
δ
x1−l
h−l − 1. At the corner(

l + δ(h− l), l + δ
µ̄(h− l)

)
, we have ρ = 0, and likewise along the line segment to (l + δ(h− l), h).

At the corner (l + µ̄(h− l), h), we have ρ = µ̄−δ
δ .
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Acceptance vector µL =
(
µL
1 , 1
)

with µjL ∈ (0, µ̄) Then (1) ωNN =
(
ωN
1 , 1

)
, ωY N =

(0, 1) and ωNY =
(
ωN
1 , 0

)
, where ωN

1 = 1
2−µL

1
< ω̄. Following NN, P offers (l, h) and so (2)(

uNN
1 , uNN

2 , uY N
1 , uNY

2 , uNY
1 , uY N

2

)
= (l, h− ωN

1 (h− l), l, h, h, l). Thus (3) µL
1 ∈ (0, µ̄) requires that

x1 = l + δ (h− l)

and µL
2 = 1 requires that

x2 ≥ l +
δ

µL
1

(h− l) .

For a fixed µL
1 < µ̄, equilibria of this type exist within

A(µL
1 , 0, 1, 0) = conv

{(
l + δ(h− l), l +

δ

µL
1

(h− l)

)
, (l + δ(h− l), h)

}
.

This line segment exists if µL
1 > δ requiring µ̄ > δ. If so, such equilibria exist for all µL

1 ∈ (δ, µ̄), and

along a line segment connecting
(
l + δ (h− l) , l + δ

µ̄ (h− l)
)
and (l + δ (h− l) , h). At a given point,

µL
1 can take on any value µL

1 ∈
[
δ
(

h−l
x2−l

)
, µ̄
)
. For each µL

1 ∈ (δ, µ̄), A(µL
1 , 0, 1, 0) ⊂ A(µ̄, 0, 1, 0).

Acceptance vector µL = (µL
1 , µ

L
2 ) with both µL

i ∈ (µ̄, 1) Then (1) ωN
i > ω̄ for both i, and so as

in the case τ < τ̂u,
(
uNN
1 , uNN

2 , uY N
1 , uNY

2 , uNY
1 , uY N

2

)
= (h, h, l, h, h, l) and (3) xi = l+ 2δ

µ−iL
(h− l),

requiring µi > 2δ. So, given µL
1 ∈ (max{µ̄, 2δ}, 1) and µL

2 ∈ (max{µ̄, 2δ}, 1), the equilibrium exists

at

A(µL
1 , 0, µ

L
2 , 0) =

(
l +

2δ

µL
2

(h− l) , l +
2δ

µL
1

(h− l)

)
.

By varying the voting Y probabilities, we obtain the area in which such types of equilibria exist:

conv {(l + 2δ (h− l) , l + 2δ (h− l)) , (l + 2δ(h− l), h) , (h, h) , (h, l + 2δ(h− l))} if µ̄ < 2δ and

conv{(l + 2δ (h− l) , l + 2δ (h− l)) , (l + 2δ(h− l), h) ,

(l +
2δ

µ̄
(h− l) , l +

2δ

µ̄
(h− l)), (h, l + 2δ(h− l))}

if µ̄ > 2δ. At each point within this area, µL
i = 2δ

(
h−l

x−i−l

)
. Again, for each combination of

µL
1 ∈ (max{µ̄, 2δ}, 1) and µL

2 ∈ (max{µ̄, 2δ}, 1), A(µL
1 , 0, µ

L
2 , 0) ⊂ A(1, 0, 1, 0).

Acceptance vector µL = (µL
1 , µ

L
2 ) with 0 < µL

1 < µL
2 < µ̄ Then (1) 1

2 < ωN
1 < ωN

2 < ω̄. P

offers (l, h) following NN. Thus (2)

(
uNN
1 , uNN

2L , uY N
1 , uNY

2 , uNY
1 , uY N

2

)
= (l, h− h− l

2− µL
1

, l, h, h, l).

44



B.2 Period 1 voting (unanimity rule) B UNANIMITY RULE

Then (3) mixing by both responders requires

x1 = l + δ (h− l)

and

x2 = l +
δ

µL
1

(h− l) .

Then x2 < h requires µL
1 > δ. Thus, given µL

1 ∈ (δ, µ̄), the equilibrium exists at

A(µL
1 , 0, µ

L
2 , 0) =

(
l + δ (h− l) , l +

δ

µL
1

(h− l)

)
.

By varying the voting Y probabilities, we obtain the area in which such types of equilibria ex-

ist: conv
{(

l + δ (h− l) , l + δ
µ̄ (h− l)

)
, (l + δ (h− l) , h)

}
. (These equilibria exist strictly between

those points.) At each point, µL
1 = δ

(
h−l
x2−l

)
and µL

2 ∈ (µL
1 , µ̄). For each combination of µL

1 ∈ (δ, µ̄)

and µL
2 ∈ (µL

1 , µ̄), A(µL
1 , 0, µ

L
2 , 0) ⊂ A(µ̄, 0, 1, 0).

Acceptance vector µL = (µL
1 , µ

L
2 ) with 0 < µL

1 = µL
2 = µ < µ̄ Then (1) ωN

1 = ωN
2 ∈ (12 , ω̄). P

is indifferent between (l, h) and (h, l) following NN. Assume he offers (h, l) with prob ρ. Then (2)

(
uNN
1 , uNN

2L , uY N
1 , uNY

2 , uNY
1 , uY N

2

)
= (l + ρ

1− µ

2− µ
(h− l) , l + (1− ρ)

1− µ

2− µ
(h− l) , l, h, h, l).

Then (3) mixing by both responders requires

x1 = l +

(
1 + ρ

1− µ

µ

)
δ (h− l)

x2 = l +

(
1 + (1− ρ)

1− µ

µ

)
δ (h− l) .

For xi < h, we need δρ
1−δ(1−ρ) < µ and δ(1−ρ)

1−δρ < µ. I.e., a necessary condition for equilibria of this

type to exist is that there exists ρ ∈ [0, 1] such that µ > max
{

δρ
1−δ(1−ρ) ,

δ(1−ρ)
1−δρ

}
. The first lower

bound is increasing and the second decreasing in ρ, and they are completely symmetric. For a given

µ, the inequality can therefore hold at some ρ iff it holds for ρ = 1
2 , giving the condition

µ >
δ

2− δ
,

which in turn is compatible with µ < µ̄ iff

δ

2− δ
<

3h− l − 1

h− l
.

45



B.2 Period 1 voting (unanimity rule) B UNANIMITY RULE

Under the last condition, there exist µ and ρ such that these type of equilibria exist. If so, the

possible range for µ is
(

δ
2−δ , µ̄

)
. For each µ in this range, there is a range for ρ such that both

xi < h. This is ρ ∈ [0, 1] if δ < µ and ρ ∈
(

δ−µ
δ(1−µ) ,

µ
1−µ

1−δ
δ

)
if δ ≥ µ, which is nonempty given

µ > δ
2−δ . At µ = δ

2−δ , that line segment collapses to the single point (h, h). Thus, given µ ∈ ( δ
2−δ , δ),

the equilibrium exists within (at µ = δ
2−δ , the line segment collapses to the single point (h, h))

A(µ, 0, µ, 0) = conv

{(
l +

(
1 +

δ − µ

µδ

)
δ (h− l) , h

)
,

(
h, l +

(
1 +

δ − µ

µδ

)
(h− l)

)}
and given µ ∈ (δ, µ̄), within

A(µ, 0, µ, 0) =

{(
l + δ (h− l) , l +

δ

µ
(h− l)

)
,

(
l +

δ

µ
(h− l) , l + δ (h− l)

)}
.

If µ̄ < δ, as µ increases the line segments are all diagonals sloping down within the square to

the southwest of (h, h). At µ = µ̄, the last such line connects
(
l +
(
1 + δ−µ̄

µ̄δ

)
δ (h− l) , h

)
and(

h, l +
(
1 + δ−µ̄

µ̄δ

)
δ (h− l)

)
. In that case we obtain a triangle with corners given by those two

points and (h, h). If µ̄ > δ, then at µ = δ the line segment connects the points (l + δ (h− l) , h)

and (h, l + δ (h− l)), and as µ increases further it eventually connects
(
l + δ (h− l) , l + δ

µ̄ (h− l)
)

and
(
l + δ

µ̄ (h− l) , l + δ (h− l)
)
. So in this case we obtain a pentagon which is the convex hull of

those four points and (h, h). (A simpler way to describe this may be that it is the area where both

xi ∈ (l+ δ(h− l), h) and x1 + x2 > l+ h+ δ(h− l).) Equilibria of this type exist in the interior of

the area. At each such point, µ is determined by the sum of offers x1 + x2:

µ =
δ (h− l)

x1 + x2 − 2l − δ (h− l)
.

(Note that, paradoxically, the acceptance probability is decreasing in the sum of offers.) ρ is likewise

determined but irrelevant for our subsequent analysis because P’s EU is independent of ρ.

Acceptance vector µL = (µ̄, µL
2 ) with µL

2 ∈ (µ̄, 1) Then (1) ωNN = (ω̄, ωN
2 ) with ωN

2 >

ω̄. Following NN , P is indifferent between (l, h) and (h, h). Suppose she proposes (h, h) with

probability ρ. Then (2)

(
uNN
1 , uNN

2L , uY N
1 , uNY

2 , uNY
1 , uY N

2

)
= (l + ρ (h− l) , h− 1− ρ

2− µ̄
(h− l) , l, h, h, l).
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Therefore, (3) mixing by both responders requires

x1 = l +

[
1 +

2− µL
2

µL
2

ρ

]
δ (h− l)

x2 = l +
1 + ρ

µ̄
δ (h− l) .

It is easy to verify that x2 > x1. Then xi < h requires ρ < µ̄−δ
δ , giving us the necessary condition

δ < µ̄ and the range ρ ∈
(
0,min

{
µ̄−δ
δ , 1

})
. So, given µL

2 ∈ (µ̄, 1) and δ < µ̄/2, the equilibrium

exists within

A(µ, 0, µ, 0) = conv

{(
l + δ (h− l) , l +

δ

µ̄
(h− l)

)
,

(
l +

2δ

µL
2

(h− l) , l +
2δ

µ̄
(h− l)

)}
,

and, given µL
2 ∈ (µ̄, 1) and δ ≥ µ̄/2, within

A(µ, 0, µ, 0) = conv

{(
l + δ (h− l) , l +

δ

µ̄
(h− l)

)
,

(
l +

2δ

µL
2

(h− l) , l +
2δ

µ̄
(h− l)

)}
.

If δ < µ̄/2, varying µL
2 ∈ (µ̄, 1) gives us a triangle with corners

(
l + δ (h− l) , l + δ

µ̄ (h− l)
)
,(

l + 2δ
µ̄ (h− l) , l + 2δ

µ̄ (h− l)
)
, and

(
l + 2δ (h− l) , l + 2δ

µ̄ (h− l)
)
. If δ ∈ (µ̄/2, µ̄), varying µL

2 ∈

(µ̄, 1) gives us a triangle with corners
(
l + δ (h− l) , l + δ

µ̄ (h− l)
)
,
(
l +
[
1 + 2−µ̄

µ̄
µ̄−δ
δ

]
δ (h− l) , h

)
,

and (l + µ̄δ (h− l) , h). At each point within this area, the associated probabilities are determined

by the equations for xi above:

µL
2 = 2

µ̄ (x2 − l)− δ (h− l)

µ̄ (x2 − l) + (x1 − l)

ρ =
µ̄

δ

x2 − l

h− l
− 1.

Acceptance vector µL = (µ̄, µ̄) Then (1) ωNN = (ω̄, ω̄) and P is indifferent between (l, h),

(h, l), and (h, h) following NN . Suppose in this case he offers (h, l) with prob ρ, (l, h) with γ and

(h, h) with 1− ρ− γ. Then (2)

(
uNN
1 , uNN

2L , uY N
1 , uNY

2 , uNY
1 , uY N

2

)
= (h−

(
γ +

ρ

2− µ̄

)
(h− l) , h−

(
ρ+

γ

2− µ̄

)
, l, h, h, l).

Then (3) mixing by both responders requires

x1 = l + (2− ρ− γ − (1− µ̄)γ)
δ

µ̄
(h− l)
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x2 = l + (2− ρ− γ − (1− µ̄)ρ)
δ

µ̄
(h− l) .

Then xi < h requires

µ̄

δ
> 2− ρ− γ − (1− µ̄)min {γ, ρ} .

For a given sum ρ+ γ, the best chance to satisfy this is ρ = γ, in which case it can be satisfied iff

there exists ρ ∈ (0, 12) such that µ̄
δ > 2− (3− µ̄)ρ. Here, the best case is ρ = 1

2 . Thus, a necessary

and sufficient condition for the existence of such equilibria is µ̄
δ > 1

2 + µ̄/2, or

δ <
2µ̄

µ̄+ 1
.

If so, the region in which these equilibria exist is non-empty. The region arises by varying ρ and

γ. If δ < µ̄/2, the northeast corner of the triangle that characterizes the equilibrium points arises

from the case where P always offers (h, h) in Period 2, i.e., (ρ, γ) = (0, 0), leading to the point(
l + 2δ

µ̄ (h− l) , l + 2δ
µ̄ (h− l)

)
. The triangle is completed by the corners where (ρ, γ) = (1, 0) and

(ρ, γ) = (0, 1) and thus the equilibrium, given δ < µ̄/2, exists within

A(µ̄, 0, µ̄, 0) = conv{
(
l + δ (h− l) , l +

δ

µ̄
(h− l)

)
,(

l +
2δ

µ̄
(h− l) , l +

2δ

µ̄
(h− l)

)
,

(
l +

δ

µ̄
(h− l) , l + δ (h− l)

)
}.

If δ ∈ (µ̄/2, µ̄), then (ρ, γ) = (0, 0) is not feasible (it would require xi > h). Consequently, the

northeast corner now is (h, h). The upper corner to the west of (h, h) is where x2 = h and ρ = 0,

leading to
(
h− (2δ−µ̄)(1−µ̄)

µ̄ (h− l) , h
)
. By symmetry, the corner to the south of (h, h) is where

x1 = h and γ = 0, leading to
(
h, h− (2δ−µ̄)(1−µ̄)

µ̄ (h− l)
)
. The other two corners in the southwest

stay as before and thus the equilibrium, given δ ∈ (µ̄/2, µ̄), exists within

A(µ̄, 0, µ̄, 0) = conv{
(
l + δ (h− l) , l +

δ

µ̄
(h− l)

)
,

(
h− (2δ − µ̄) (1− µ̄)

µ̄
(h− l) , h

)
, (h, h) ,(

l +
2δ

µ̄
(h− l) , l +

2δ

µ̄
(h− l)

)
,

(
h, h− (2δ − µ̄) (1− µ̄)

µ̄
(h− l)

)
,

(
l +

δ

µ̄
(h− l) , l + δ (h− l)

)
}.

If δ ∈
(
µ̄, 2µ̄

µ̄+1

)
, the northeast corner again is (h, h). Now, (ρ, γ) = (1, 0) and (ρ, γ) = (0, 1) are not

feasible as they would require x2 > h and x1 > h, respectively. The upper corner to the west of

(h, h) is where x2 = h and ρ+ γ = 1 (note that x1 +x2 = 2l+ δ 1+µ̄
µ̄ (h− l) if ρ+ γ = 1), leading to(

l +
(
δ 1+µ̄

µ̄ − 1
)
(h− l) , h

)
. By symmetry, the corner to the south of (h, h) is where x1 = h and
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ρ+ γ = 1, leading to
(
h, l +

(
δ 1+µ̄

µ̄ − 1
)
(h− l)

)
. Thus the equilibrium, given δ ∈

(
µ̄, 2µ̄

µ̄+1

)
, exists

within

A(µ̄, 0, µ̄, 0) = conv

{(
l +

(
δ
1 + µ̄

µ̄
− 1

)
(h− l) , h

)
, (h, h) ,

(
h, l +

(
δ
1 + µ̄

µ̄
− 1

)
(h− l)

)}
.

To sum up, each of these areas are part of the triangle that can be described by the convex hull

conv
{(

l + δ (h− l) , l + δ
µ̄ (h− l)

)
,
(
l + 2δ

µ̄ (h− l) , l + 2δ
µ̄ (h− l)

)
,
(
l + δ

µ̄ (h− l) , l + δ (h− l)
)}

.

There, the conditions x1 < h and x2 < h determine the size of the triangle where an equilibrium

with an acceptance vector of µ = (µ̄, 0, µ̄, 0) exists. At each point within these areas, the associ-

ated probabilities are ρ = 2(1−µ̄)δ(h−l)+µ̄(x1−2x2+l+µ̄(x2−l))
(3−µ̄)(1−µ̄)δ(h−l) and γ = 2(1−µ̄)δ(h−l)+µ̄(x2−2x1+l+µ̄(x1−l))

(3−µ̄)(1−µ̄)δ(h−l)

(determined by the equations for xi above).

B.3 Selection of voting equilibria (unanimity rule)

P generally prefers the equilibrium with the larger acceptance probability. If she does not, then

she will not make such proposals in Period 1. This we will show below. We exclude equilibrium

areas that are fully included in another equilibrium area that is associated with a larger probability

of passage and where (at least) at the “cheapest” points of the equilibrium area associated with

the lower probability of passage, P indeed prefers the equilibrium with the larger probability of

passage:

• A
(
µL
1 , 0, 1, 0

)
⊂ A (µ̄, 0, 1, 0) for all µL

1 ∈ (δ, µ̄) and for each of the cheapest points of

A(µL
1 , 0, 1, 0) where µL

1 ∈ (δ, µ̄), P prefers the continuation equilibrium associated with µ =

(µ̄, 0, 1, 0): Suppose x̃1 ∈ A(µ̃, 0, 1, 0) = conv
{(

l + δ(h− l), l + δ
µ̃ (h− l)

)
, (l + δ(h− l), h)

}
.

Then at the cheapest of such equilibria, we have EUP

(
x̃1, µ̃

)
= µ̃

4

(
1− 2l − 1+µ̃

µ̃ δ (h− l)
)
+

δ
2 (1− h− l)+ 1

4 (1− µ̃) δ (1− h− l) and ∂EUP (x1,µ̃)
∂µ̃ = 1

4 (1− 2l − δ(h− l))− 1
4δ (1− h− l) >

0, which can easily be shown to be true.

• A(µL
1 , 0, µ

L
2 , 0) ⊂ A(µ̄, 0, 1, 0) for all combinations of µL

1 ∈ (δ, µ̄) and µL
2 ∈ (µL

1 , µ̄). For

x1 ∈ A(µL
1 , 0, µ

L
2 , 0) =

(
l + δ (h− l) , l + δ

µL
1
(h− l)

)
, P prefers the continuation equilibrium

associated with µ = (µ̄, 0, 1, 0): EUP

(
x1, µ =

(
µL
1 , 0, µ̃, 0

))
=

µL
1 µ̃
4

(
1− 2l − 1+µL

1

µL
1 µ̃

δ (h− l)
)
+

δ
2

(
µ̃+ µL

1 − µL
1 µ̃
)
(1− h− l) +

(
2− µL

1

)
(1− µ̃) δ

4 (1− h− l) and ∂EUP (x1,µ̃)
∂µ̃ =

µL
1
4 (1− 2l) +

δ
2

(
1− µL

1

)
(1− h− l) −

(
2− µL

1

)
δ
4 (1− h− l) > 0 which can be shown to be true. Thus P

prefers µ =
(
µL
1 , 0, 1, 0

)
over µ =

(
µL
1 , 0, µ̃, 0

)
. In addition, we know from above that P prefers

µ = (µ̄, 0, 1, 0) over µ =
(
µL
1 , 0, 1, 0

)
when µL

1 ∈ (δ, µ̄).

• A(µL
1 , 0, 1, 0) ⊂ A(1, 0, 1, 0) for all µL

1 ∈ (max {µ̄, 2δ} , 1). For each of the cheapest points of
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A(µL
1 , 0, 1, 0) where µL

1 ∈ (max {µ̄, 2δ} , 1), P prefers the continuation equilibrium associated

with µ = (1, 0, 1, 0): Suppose that

x̃1 ∈ A(µ̃, 0, 1, 0) = conv
{(

l + 2δ(h− l), l + 2δ
µ̃ (h− l)

)
, (l + 2δ(h− l), h)

}
. So at the cheap-

est of such equilibria, we have EUP

(
x̃1, µ̃

)
= µ̃

4

(
1− 2l − 21+µ̃

µ̃ δ (h− l)
)
+ δ

2 (1− h− l) +

1
2

(
1− µ̃

2

)
δ (1− 2h) and ∂EUP (x1,µ̃)

∂µ̃ = 1
4 (1− 2l − 2δ(h− l)) − 1

4δ (1− 2h) > 0 which can

easily be shown to be true.

• A(µL
1 , 0, µ

L
2 , 0) ⊂ A(1, 0, 1, 0) for all combinations of µL

1 ∈ (max{µ̄, 2δ}, 1) and

µL
2 ∈ (max{µ̄, 2δ}, 1). For x1 ∈ A(µL

1 , 0, µ
L
2 , 0) =

(
l + 2δ

µL
2
(h− l) , l + 2δ

µL
1
(h− l)

)
, P prefers

the continuation equilibrium associated with µ = (1, 0, 1, 0): We have

EUP

(
x1, µ =

(
µL
1 , 0, µ̃, 0

))
=

µL
1 µ̃
4

(
1− 2l − 2

µL
1 +µ̃

µL
1 µ̃

δ (h− l)
)
+ δ

2

(
µ̃+ µL

1 − µL
1 µ̃
)
(1− h− l)+(

1− µL
1
2

)(
1− µ̃

2

)
δ (1− 2h) and thus

∂EUP (x1,µ=(µL
1 ,0,µ̃,0))

∂µ̃ =
µL
1
4 (1− 2l)− δ

2 (h− l)+ δ
2

(
1− µL

1

)
(1− h− l)−

(
2− µL

1

)
δ
4 (1− 2h) >

0 which can be shown to be true. Thus P prefers µ =
(
µL
1 , 0, 1, 0

)
over µ =

(
µL
1 , 0, µ̃, 0

)
. In

addition, we know from above that P prefers µ = (1, 0, 1, 0) over µ =
(
µL
1 , 0, 1, 0

)
.

• A(µL
1 , 0, 1, 1) ⊂ A(1, 0, 1, 1) for all µL

1 ∈ (0, 1).

For x1 ∈ A(µL
1 , 0, 1, 1) =

(l + δ (h− l) , h) if τ < τ̂u(
l + δ

2 (h− l) , h
)

if τ > τ̂u
, P prefers the continuation equilib-

rium associated with µ = (1, 0, 1, 1):

(a) Suppose τ < τ̂u: EUP

(
x̃1, µ̃

)
= µ̃

2 (1− l − δ(h− l)− h) +
(
1− µ̃

2

)
δ (1− 2h) and

∂EUP (x1,µ̃)
∂µ̃ = 1

2 (1− l − δ(h− l)− h) − δ
2 (1− 2h) > 0 which is true because 1 − l − h >

δ (1− h− l).

(b) Suppose τ > τ̂u: EUP

(
x̃1, µ̃

)
= µ̃

2

(
1− l − δ

2(h− l)− h
)
+
(
1− µ̃

2

)
δ
2 (1− h− l) and

∂EUP (x1,µ̃)
∂µ̃ = 1

2

(
1− l − δ

2(h− l)− h
)
− δ

4 (1− h− l) > 0 which can be shown to be true. Thus,

for x1 = A(µL
1 , 0, 1, 1), P prefers the continuation equilibrium associated with µ = (1, 0, 1, 1).

In addition, one can show that

• A(µ, 0, µ, 0) ⊂

(A (µ̄, 0, µ̄, 0) ∪A (µ̄, 0, µ̂, 0) ∪A (µ̂, 0, µ̄, 0) ∪A (µ̄, 0, 1, 0) ∪A (1, 0, µ̄, 0) ∪A (1, 0, 1, 0)) for all

µ ∈
(

δ
2−δ , µ̄

)
with µ̂ = 2µ̄(x1−l)−δτ

x2−l+µ̄(x1−l)−δτ . For each of the cheapest points of A(µ, 0, µ, 0), i.e.,

where x̃1 + x̃2 = l+ h+ δ(h− l), P prefers the continuation equilibrium associated with µ =

(µ̄, 0, µ̄, 0): We have EUP

(
x̃1, µ = (µ̃, 0, µ̃, 0)

)
= µ̃2

4 (1− h− l − δ (h− l))+2δ µ̃
2

(
1− µ̃

2

)
(1− h− l)+(

1− µ̃
2

)(
1− µ̃

2

)
δ 1−µ̃
2−µ̃ (1− h− l) and thus
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∂EUP (x1,µ̃)
∂µ̃ = µ̃

2 (1− h− l − δ (h− l))+(1− 2µ̃) δ
4 (1− h− l) > 0 which can be shown to hold

true.

Consequently, we can solve multiplicity of equilibrium points (i.e., at a given point in Period 1

proposal space there are multiple voting Y probabilities leading to an equilibrium) by laying focus

on the equilibrium that is associated with the largest probability of Period 1 passage. So the

areas specified in Proposition 3 (and Figure 4) are the areas, together with the respective voting

Y probabilities, that are not part of any other area associated with a larger voting Y probability

(w.l.o.g. suppose that µL
1 ≤ µL

2 and define µ̄ = 3h−l−1
h−l = 1− 1−2h

h−l ):

1. Region 1: Both responders vote N irrespective of their type, i.e. µ = (0, 0, 0, 0). The area

that is not part of any of the other equilibrium areas.

2. Region 2: A (0, 0, 1, 1) =

conv
{
(0, h) ,

(
l + δ

2τ, h
)}

τ > τ̂u

conv {(0, h) , (h, h)} τ < τ̂u
(see Lemma 7) joint with its

symmetric counterpart.

3. Region 3: A (µ̄, 0, µ̄, 0) = conv
{(

l + δτ, l + δ
µ̄τ
)
,
(
l + 2 δ

µ̄τ, l + 2 δ
µ̄τ
)
,
(
l + δ

µ̄τ, l + δτ
)}

if δ ∈(
0, µ̄2

)
,

A (µ̄, 0, µ̄, 0) = conv{
(
l + δτ, l +

δ

µ̄
τ

)
,

(
h− (2δ − µ̄) (1− µ̄)

µ̄
τ, h

)
, (h, h) ,(

h, h− (2δ − µ̄) (1− µ̄)

µ̄
τ

)
,

(
l +

δ

µ̄
τ, l + δτ

)
}

if δ ∈
( µ̄
2 , µ̄

)
, and A (µ̄, 0, µ̄, 0) = conv

{(
l +
(
δ 1+µ̄

µ̄ − 1
)
τ, h
)
, (h, h) ,

(
h, l +

(
δ 1+µ̄

µ̄ − 1
)
τ
)}

if δ ∈
(
µ̄, 2µ̄

1+µ̄

)
(allocating in total more than 2l + 1+µ̄

µ̄ δτ).

4. Region 4:

A (µ̄, 0, µ̂, 0) = conv
{(

l + δτ, l + δ
µ̄τ
)
,
(
l + 2

µ̄δτ, l +
2
µ̄δτ

)
,
(
l + 2δτ, l + 2

µ̄δτ
)}

if δ ∈
(
0, µ̄2

)
conv

{(
l + δτ, l + δ

µ̄τ
)
,
(
l +
(
(µ̄−δ)(2−µ̄)

µ̄ + δ
)
τ, h
)
, (l + µ̄τ, h)

}
if δ ∈

( µ̄
2 , µ̄

)


(where µ̂ = 2µ̄(x1−l)−δτ
x2−l+µ̄(x1−l)−δτ ) joint with its symmetric counterpart.
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5. Region 5:

A (µ̄, 0, 1, 0) = conv{
(
l + δτ, l +

δ

µ̄
τ

)
, (l + δτ, h) , (min {l + 2δτ, l + µ̄τ} , h) ,(

min {l + 2δτ, l + µ̄τ} ,min

{
l + 2

δ

µ̄
τ, h

})
}

(given δ < µ̄) joint with its symmetric counterpart.

6. Region 6: A (1, 0, 1, 0) = conv {(l + 2δτ, l + 2δτ) , (l + 2δτ, h) , (h, h) , (h, l + 2δτ)} (given δ <

1
2).

7. Region 7: A (1, 0, 1, 1) =

conv
{(

l + δ
2 (h− l) , h

)
, (h, h)

}
τ > τ̂u

conv {(l + δ (h− l) , h) , (h, h)} τ < τ̂u
joint with its symmetric

counterpart.

8. Region 8: µ = (1, 1, 1, 1) and allocating at least h to each responder.
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