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Abstract

Understanding how emotions stemming from negative outcomes affect investment

decisions is critical for studying choice under uncertainty. I build a framework to

study how past and anticipated negative emotions interact with an agent’s preference

and environment to influence her investment level. I show that the dynamic effect

of emotions on decisions is more complicated than previously thought and requires

a careful analysis of the decision environment to build correct predictions. Using

baseball data, I show how to use the theoretical framework empirically to investigate

the dynamic impact of emotion and find that it leads to suboptimal pitch velocity

decisions.
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1 Introduction

How should people react to adverse outcomes? Economic theory generally posits that

reactions should stem from changing beliefs, wealth variations or learning by doing. How-

ever, these dynamics do not apply to all contexts. When they are absent, previous events

should not affect future investments. Nevertheless, they do. Negative outcomes impact

investment in heterogeneous ways when traditional dynamics are absent or controlled for

(Heath, 1995; Augenblick, 2016; Dalmia and Filiz-Ozbay, 2021; Martens and Orzen, 2021;

Negrini et al., 2022; Guiso et al., 2018).

On the other hand, emotional reactions to adverse outcomes significantly impact peo-

ple’s economic decisions and are a credible dynamic to consider. For example, they prompt

individuals to take more risks in various environments (Post et al., 2008; Foellmi et al.,

2016; Callen et al., 2014; Passarelli and Tabellini, 2017), while reducing risk tolerance in

many others (Cohn et al., 2015; Guiso et al., 2018; Meier, 2022).

The literature has, however, failed to produce consistent results. For example, there

is strong evidence that fear triggers pessimistic and anger triggers optimistic appraisals

of risky situations (Lerner and Keltner, 2001; Lerner et al., 2015). As such, fear and

anger should respectively be associated with less and more risk-taking. However, empiri-

cal evidence shows that only fear is consistently associated with less risk-taking (Nguyen

and Noussair, 2014; Breaban and Noussair, 2017; Sean Wake and Satpute, 2020; Meier,

2022). In comparison, anger negatively correlates with risk-taking in (Nguyen and Nous-

sair, 2014), shows a weak positive correlation comparable to that of a neutral emotional

state in (Breaban and Noussair, 2017). In contrast, (Meier, 2022) measures a positive

correlation between anger and risk-taking in survey data.

Given the importance of the influence of such emotions on decisions, it is necessary to

understand better why such inconsistencies might arise. However, most economic mod-

els that consider emotions in choice under uncertainty do not consider the effect of past

emotions on current behaviour.1 This paper participates in the currently small theoretical

literature studying the effect of current emotions on future behaviour (Gneezy et al., 2014;

Wälde, 2018)

I study the effect of negative emotions stemming from below-expectation outcomes

(frustrating events hereafter) on future investment decisions. I focus on a forward-looking

1In particular, in these models, emotions only affect behaviour through their expected future effect.
See the literature review at the end of this section for more details.
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decision-maker who invests resources in projects until she succeeds. Her investment either

increases her return or her probability of success. Her emotions are dynamic. When she

fails, her emotional level increases with the amount of wasted investment. As such, it

accumulates, but it also decays with time. When she succeeds, she gets some utility, called

success utility, the decision problem stops, and the emotion’s effect on utility disappears:

success brings emotional relief. The emotion impacts utility in two ways. First, it exerts an

emotional cost, which is increasing in the emotional level. Second, it triggers appraisal

tendencies (Lerner and Keltner, 2000, 2001), which distorts the agent’s evaluation of her

environment and preferences. For example, anger tends to make people more optimistic

while fear makes them less (Lerner and Keltner, 2000). In my setting, this translates into

a change (positive or negative) in the marginal utility of investment, as emotions change

the evaluation of how much utility success would bring.2

The conceptual novelty of the model is to define the event that triggers the emotional

reaction (frustrating events) while keeping the effect of emotions on utility general.3 In

contrast, most of the current economic literature studies the effect of specific emotions on

behaviour. The event-based approach to emotions brings several advantages. (1) Frustrat-

ing events provoke various negative emotions, such as disappointment, sadness, fear and

anger, which can affect behaviour differently. Restricting the analysis to a single emotion

would paint an inaccurate picture of how people react to such situations. (2) It is less

culturally dependent than a definition-based approach. Emotions are socio-cultural phe-

nomena. As such, culture will influence how people react to frustrating events and even

what type of emotion they can have (Mesquita and Ellsworth, 2001). (3) If one has good

reason to do so, the framework can still accommodate specific emotions by restricting how

they impact utility and the appraisal of the environment. The main theoretical contribu-

tion is to provide a closed-form expression that represents and decomposes the effect of

negative emotions on an agent’s investment level.4

When do negative emotions increase or decrease the agent’s investment? On the one

hand, the agent wants to limit her exposure to future emotional costs and decrease invest-

ment. This is the emotional cost effect, which has a negative impact on the investment

2Or a change in the evaluation of the marginal return of some production function.
3The focus on frustrating events is natural and has a long tradition in psychology (Dollard et al., 1939).

In general, modern emotion theories would take the evaluation of an event as frustrating as one of the first
steps that could lead to many negative emotions and reactions (Keltner and Lerner, 2010).

4For psychologists, this closed-form expression can be considered as the result of the second appraisal
in Lazarus and Folkman (1984). In other words, the model endogenously links valence, cognitive appraisal,
and appraisal tendencies to action tendencies.
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level as long as the negative emotion level increases with investment when she fails. On

the other hand, when investment increases her probability of success, the negative emotion

also creates an incentive to seek emotional relief. This is the prospective relief effect, which

always positively impacts investment. Finally, the appraisal tendency effect can influence

investment either way, depending on the sign of the appraisal tendencies. I show that in

a general decision environment, the change in the investment level will be a weighted sum

of the three effects.

The characterisation of negative emotion’s effect on investment fits and clarifies ob-

servations made by psychologists and economists. To continue with the example of fear

and anger, psychologists usually associate anger and fear with appraisals of respectively

high and low beliefs of control. This translates into a relatively higher willingness to solve

the problem triggering the emotion in the case of anger relative to fear. I get this re-

sult endogenously. Indeed, the model predicts that an increase in control belief,5 always

leads decision-makers to increase their investment relatively more after a frustrating event,

ceteris paribus.6

The second contribution is to break down the role of appraisal tendencies in behavioural

reactions. I show that positive appraisal tendencies are neither necessary nor sufficient to

affect investment positively. As such, while important, appraisal tendencies are not the

only force driving an agent’s reactions. This explains why anger’s (positive) appraisal

tendencies do not always translate into more risk-taking behaviour. Indeed, the effect of

anger on the investment level will result from a trade-off that can tip in both directions

depending on the individual’s preferences and the environment. In contrast, the effects of

emotional cost and appraisal tendencies go in the same direction in the case of fear, which

leads to unambiguous predictions about how it affects behaviour. This effectively breaks

the revealed preference (or emotions) argument one can use to infer emotions from actions

and explains the discrepancies observed in the literature.

As such, the theoretical framework shows that one must be much more cautious when

inferring the behavioural implications of emotions by studying the choice environment and

its influence on emotion’s dynamic. The last contribution of this paper is to provide such

an analysis using Major League Baseball Data. I use a large pitch-by-pitch Major League

Baseball Data with a detailed set of controls to do this. These allow to control for most,

if not all, possible confounders. I exploit the expected score variations due to the pitch

outcome to measure the strength of the negative emotion triggered by failed pitches. I find

5Control Bielief is modelled as a higher marginal effect of investment on the probability of success.
6That is, they would decrease investment less or increase more.
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signs of negative emotion accumulation in pitchers’ behaviour. Success seems to dissipate

its effect. The emotion tends to increase the pitch’s speed. The magnitude of the impact is

sizeable. One standard deviation increase in the emotion’s intensity7 accounts for 45.72%

to 64.70 % of the magnitude of the effect of one standard deviation increase in fatigue

triggered while pitching during an inning (5.16 throws). Finally, I show that sensitivity

to negative emotions seems to have implications in terms of productivity. Pitchers whose

pitch quality is more affected by negative emotions tend to have lower career average skills

measures.

Over the years, many contributions have modelled particular emotions such as regret

(Loomes and Sugden, 1982; Bell, 1982), disappointment (Bell, 1985; Loomes and Sugden,

1986) anxiety or excitement (Caplin and Leahy, 2001). In these models, emotions only

affect decision-making through the expectation of what can happen in a forward-looking

manner, but past emotions do not influence current decisions. In contrast, Loewenstein

(2000) develops a framework to show the effect of visceral factors8 on current decisions but

does not consider their dynamic. Here, both past and anticipated emotions affect decisions,

allowing novel theoretical predictions. Two exceptions, which consider the dynamics of

emotions, are (Wälde, 2018) and (Gneezy et al., 2014), which model the dynamic effect of

stress and guilt on behaviour. Finally, Dillenberger and Rozen (2015) axiomatise a model of

history-dependent risk-attitude. The paper shares similarities to this one, as risk aversion

depends on the history of the realisation of lotteries, but the intensity of past frustrating

events does not play a role in determining risk aversion. I would also like to mention an

active literature modelling emotions in interpersonal contexts using psychological game

theory tools (Battigalli and Dufwenberg, 2007, 2009; Battigalli et al., 2019).

Section 2, presents the general framework and explains the psychology behind the mod-

elling choices. In section 3, I study the determinant of emotional reactions stemming from

frustrating events. I first focus on the impact of appraisal tendencies. I then study how

frustration interacts with the agent’s control over her success probability through invest-

ment. Section 4 investigates the effect of frustration accumulation on pitcher’s behaviour

using pitch-by-pitch Major League Baseball data. Section 5 concludes and discusses the

forward-looking and time consistency assumption used in the model.

7Here, intensity is proxied through the intensity of the frustrating event - the gap between what was
expected and what happened. A standard deviation change in intensity equals 0.27 expected runs the
opposing team could score because of the pitch’s failure.

8Visceral factors are drive states that have a hedonic impact on utility, such as hunger and possibly
emotions.

5



2 General Framework and Psychological Principles

The general decision environment describes an agent investing resources to solve a problem

until she succeeds. Although stylised, it allows for clean predictions and is an ideal setup

for studying negative emotion accumulation and its effect on behaviour. The modelling

principles described in this section are simple, portable, and easily adapted to fit other

decision environments.

Decision environment

I study an agent who is investing resources xt ∈ R+ at every point in time t ∈ R+, to

possibly get a successful investment.9 Investment might increase utility in case of success,

or increase the probability of success, depending on the application in the following sections.

Success is determined by a Poisson process q, where q = 0 if the investment failed. The

probability that q increases by 1 during dt, i.e. dq = 1, is given by π̄(xt)dt, where π̄(xt) is

the arrival rate of the Poisson process during the time interval dt. In other words, π̄(xt)dt

denotes the probability of getting a success during the time interval dt. As such, the

probability of failing from 0 to time t, denoted pt, is given by an inhomogeneous Poisson

point process with:

pt =

(∫ t

0
π̄(xs)ds

)0

0!
e−

∫ t
0 π̄(xs)ds = e−

∫ t
0 π̄(xs)ds. (1)

As such, pt takes a convenient form as it will act as an endogenous discount rate to the

inter-temporal maximisation problem.

Psychological dynamics

In what follows, I use the umbrella term frustration to name all emotions stemming from

frustrating events.10 Frustration should not be interpreted as a specific emotion and must

be understood as a theoretical concept. Interested and specialised readers can refer to

Supplemental Appendix E for more information about the frustration concept.

9Resources can represent many different things: money, capital, time, force, space, effort etc..
10The most famous use of the term frustration comes from the work on the frustration-aggression hy-

pothesis Dollard et al. (1939). However, they use the term frustration to denote frustrating events. I use
the term frustrating event to denote the event triggering frustration. See Breuer and Elson (2017) for a
modern summary of the theory.
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Emotions are dynamic by nature. The central part of the framework is that frustration

ft is modelled as a stock that lingers if the investor continues to suffer failures. Specifically,

frustration increases by the amount of wasted investment when she fails but decays at a

rate δ ∈ (0, 1):

ḟt = xt − δft (2)

Where ḟt represents the derivative of frustration with regards to time. The decision

problem stops if the investor succeeds at time τ and all future utilities equal 0. These

modelling choices capture several dynamic features of emotions. First, the decay rate δ

represents that emotional response tends to fade when time passes and revert to a neutral

state (Elster, 1998; Loewenstein, 2000; Lerner et al., 2015).

Second, the effect of frustration disappears after achieving success. This represents the

“goal-attainment hypothesis”, whereby the impact of emotion on behaviour ceases when the

problem at its source is solved (Han et al., 2007; Goldberg et al., 1999). This modelling

choice will be especially relevant when investors cannot do precise “accounting” of the

loss and cannot recuperate it. For example, when individuals fail when spending time or

exerting effort, investment is hard to measure and impossible to get back. Alternatively,

when investing in a project that is important to the decision-maker, emotional relief might

only be attainable when the project comes to fruition and not when the investors break

even, as the financial return was not what was important to begin with.

Finally, frustration accumulates. Emotions of the same sign (positive or negative)

that are triggered consecutively tend to overlap and create a phenomenon called “emotion

augmentation” (Pe and Kuppens, 2012; Kuppens and Verduyn, 2017). In these cases, the

effect of one emotional experience tends to increase the following one. I represent this with

a time dependence between current and past frustration levels.

Note that frustration could also increase independently of the investment level by a

discrete increment. I investigate this case in supplemental appendix B.

Material preferences

Investment is costly. I represent the investment cost as an increasing and (weakly) convex

cost function c(x). If she succeeds, the agent gets utility u(xt, ft), called success utility,

which is increasing in investment and jointly concave in investment and frustration. The

impact of frustration on success utility is described in the following subsection.
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The impact of frustration on preferences

I consider that frustration impacts utility in two ways. First, emotions stemming from

frustrating events will be negative emotions. As such, if she is still investing at time

t, the agent suffers an emotional cost stemming from her frustration stock. I represent

the emotional cost as an increasing and convex function v(f). Psychologists would call

the negative effect of v(f) on utility the valence of the emotion. In other words, v(f)’s

construction reflects that ceteris paribus, people prefer to be less afraid or less angry and

prefer situations with lower f .

Second, frustration triggers appraisal tendencies that affect the agent’s judgement.

As such, some options can become more appealing when in an emotional state than in

a neutral state. Appraisal tendencies are important as emotions with the same valence

can have different appraisal tendencies (e.g. fear and anger). Similarly, emotions with

opposite valence can have the same appraisal tendencies (e.g., anger and happiness) (Lerner

and Keltner, 2001, 2000). To represent this, I say that frustration exhibits negative

(positive) appraisal tendencies if uxf < (>)0.11 In other words, negative (positive)

appraisal tendencies decrease (increase) the marginal utility of investment one gets in case

of success. For example, positive appraisal tendencies characterise a situation where the

decision-maker believes her actions are becoming more efficient at increasing her success

utility or simply because she marginally values success more.12

The inter-temporal decision problem

Let me now give the general form of the instantaneous expected utility representing the

decision maker’s preferences:

U(xt, ft) = π̄(xt)u(xt, ft)− v(ft)− c(xt) (3)

During a time interval dt, the probability of success is given by π̄(xt). The agent gets

her success utility u(xt, ft) when she succeeds. Note that in this general formulation, the

probability of success and utility depend on xt. While I do not focus on this general case

in the next sections, it is not improbable.13 Finally, the two last terms of equation (3)

11In what follows, I represent derivatives by subscripts: fx = ∂f(x,y)
∂x , fxy = ∂2f(x,y)

∂x∂y , fxx = ∂2f(x,y)
∂x2 .

12Appraisal tendencies could affect motivation through another channel: the decision maker’s actual
or assessment of the Poisson law arrival rate, as emotions influence risk assessment (Lerner and Keltner,
2000, 2001). This framework can easily be adapted to model these effects.

13A researcher increasing her effort level would increase the probability (higher π̄) and the quality of a
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represent the emotional cost v(ft) the agent has to endure because she is still investing at

time t and the investment cost c(xt). Let ρ > 0 be the agent’s subjective discount rate.

As the decision-making process only continues until time t with probability pt, the agent

must also discount these situations accordingly. Let ϕ(xt, t) =
∫ t

0
π̄(xs)ds + ρt denote the

effective discount rate. The inter-temporal decision problem is given by:

V (t0, ft0) = max
xt∈R+

∫ ∞

t0

e−ϕ(xt,t)U(xt, ft)dt (G.O)

ḟt = xt − δft

ft0 given

As such, the decision maker, who stands at t0 decides on optimal investment levels xt

for all t. The function xt, xt : [t0,∞) → R+ gives, for every t, the optimal investment level

the agent is willing to put in if she is still failing at time t.14 To ensure sufficiency of the

first order conditions, I assume joint concavity of e−ϕ(xt,t)U(xt, ft). This assumption is not

trivial, as the endogenous probability of success can create important convexities in the

inter-temporal maximisation problem. I relax the concavity assumption in supplemental

appendix C and show that the model transforms into a rational addiction model Becker

and Murphy (1988).15

I focus the analysis on two distinct set-ups. In section 3.1, I explore the inter-temporal

effects of appraisal tendencies because they are reminiscent of previous works in the litera-

ture (Loewenstein, 2000; Laibson, 2001).16 In Section 3.2, I consider an environment where

investment affects the probability of success with π̄(x) = γ · x, γ > 0, but frustration does

not directly influence the preferences for the choices at hand i.e. there are no appraisal

tendencies. The general model is solved in supplemental appendix A.1.

publication (higher u). I solve the model for the general case in supplemental appendix A.1.
14I focus on situations where frustration accumulation is the only dynamic. In supplemental appendix

D, I explore the combined effect of learning-by-doing and frustration accumulation and characterise the
conditions under which the optimal investment path can become non-monotonic.

15I show that the decision-maker can become rationally addicted even when Uxf = 0, that is, without
any habit formation process, which are the usual drivers of addictive behaviours in traditional rational
addiction models.

16Indeed, appraisal tendencies affect the agent’s marginal utility in case of success, as do Laibson (2001)
’s cues (which create craving/disgust and then habits) or Loewenstein (2000)’s visceral factors.
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3 The formation of emotional reactions

3.1 The emotional cost and Appraisal tendencies

To get cleaner dynamics and isolate the role of appraisal tendencies, I focus on situations

where the success probability is exogenous, i.e. the arrival of the Poisson process will be

π̄(xt) = π > 0. As such, the investor invests because her success utility increases with

investment. The instantaneous expected utility at time t for a period dt is:

U(xt, ft) = πu(xt, ft)− v(ft)− c(xt) (4)

The overall optimisation problem is as in (G.O) presented before, with the specification

given here.17 After linearising the system obtained by solving the optimisation problem

around the steady state, I get the following system:18

˙̂xt = (ρ+ π + δ)x̂t + Ω∗
A · f̂t (5a)

˙̂
ft = x̂t − δf̂t (5b)

Where Ω∗
A =

1

U∗
xx

(
U∗
ff + (ρ+ π + 2δ)U∗

xf

)
(6)

Where U∗
ff , U

∗
xf and U∗

xx indicate the value of the second-order derivatives at the steady

state. The first line in (5a) is the Euler equation; it indicates how investment varies for a

given level of investment x̂t and f̂t.(5b) reiterates the frustration law of motion.

The variable of interest is Ω∗
A, which captures the temporal complementarity of invest-

ment and frustration when there are appraisal tendencies.19 Its sign indicates whether an

17One can ensure that the solutions are in the interior of the control variable set by setting Inada type
conditions limx→0 Ux(x, f) = ∞ and limx→I Ux(x, f) = −∞ for all f . To have sufficiency, the Hamiltonian
must be jointly concave in x and f . In other words, the appraisal tendencies of frustration cannot be too
strong. Finally, note that these conditions also ensure the uniqueness of the steady-state

18I introduce a variable transformation such that the steady-state value of frustration and investment
equals zero. As such, values below the steady state level are strictly negative. The scaled variables are
denoted with a hat.

19To be precise, Ω∗
A is the value of the Volterra derivative of the optimal investment path functional

X∗(t) at the steady state, see Ryder Harl E. and Heal (1973), for more details. It is also easy to notice
the similarity with Becker and Murphy (1988) Rational Addiction model because the appraisal tendencies
U∗
xf are akin to addictive tendencies. In the next section, I set these appraisal tendencies to zero to study

different dynamics. In Appendix C, I show that I can get Rational Addiction dynamics without appraisal
tendencies.
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increase in frustration today increases or decreases the optimal investment level tomorrow.

Proposition 1 formally shows the dependence of the system’s dynamics on Ω∗
A and clarifies

when the maximisation problem is well-behaved and has a stable steady-state.

Proposition 1. 1. An increase in f leads to an increase (decrease) in investment pro-

vision x if and only if Ω∗
A < (>)0,

2. The system exhibits saddle path stability as long as Ω∗
A > −δ(ρ+ π + δ).

Proposition 1 and the Euler equation (5a) give us a clear interpretation of Ω∗
A. Frus-

tration’s impact on the investment level will be determined by the value and sign of Ω∗
A.

Studying equation (6), we see that the behavioural reaction will have two components

(1) an emotional cost effect U∗
ff < 0, which represents the effect of the frustration cost

on behaviour. The increasing marginal cost of frustration leads to steeper utility losses

if frustration increases. As such, the agent must decrease investment to equate marginal

utility to the increased shadow cost of frustration.20

The second component is the appraisal tendency effect, given by Uxf . The appraisal

tendency effect measures the change of the marginal utility when frustration changes.

They naturally translate into a change in the optimal investment level. If positive, they

can mitigate the negative effect of the emotional cost on investment. If strong enough,

they can trigger an increase in investment.

This leads to my first observation: although appraisal tendencies can amplify or miti-

gate the emotional cost effect, positive appraisal tendencies are not sufficient to have agents

increase their investment level.

Also note that the parameters ρ, π and δ play an essential role. Suppose the investor

does not discount future failures heavily because she thinks that failures are likely (low

π). In that case, the effects of appraisal tendencies are relatively discounted compared

to long-term frustration costs because they only affect success utility. Similarly, lower

time-discounting (low ρ) would put relatively more weight on U∗
ff . The opposite effect

happens for the decay rate of frustration, which amplifies the effects of appraisal tendencies.

If the decay rate increases, frustration cannot reach higher levels and is potentially less

emotionally costly in the long run. This shows that emotional reaction balances long-term

implications: the expected emotional cost of continuing to fail versus the short-term benefit

of achieving success.

20Note that if frustration increases in exogenous increments, as in supplemental appendix B, the emo-
tional cost effect does not affect investment.
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3.2 The effect of the controllability of the environment

This section shows how the perceived control of an environment influences emotional re-

actions stemming from frustrating events. Perceived control is generally seen as a critical

driver in emotional responses. People who believe they control their environment more

also tend to be more proactive in solving the problem causing their distress (Smith and

Ellsworth, 1985; Lerner and Keltner, 2001). It is also one of the main features differenti-

ating situations triggering fear and anger. One appealing feature of this framework is that

its solution provides action tendencies (increase or decrease investment) that resemble the

reaction of anger and fear, depending on how they control their environment.

Situations where decision-makers control the probability of outcomes are essential in

many applications, such as principal-agent relations or self-protection frameworks. I equate

control over the environment with the control over the probability of success during each

time interval dt, given by π̄(xt) = γ · xt, with γ > 0. The higher the γ, the higher the

control. Let ϕ(xt, t) =
∫ t

0
γxsds+ ρt. Let me use the following specification to fix ideas.

U(xt, ft) = γ · xtu− v(ft)− c(xt) (7)

Success utility u > 0 is fixed, and the probability of having a success during dt,

γ · xt · dt, depends on x. Notice that Uxf = 0: there are no appraisal tendencies, and

changing the frustration level does not change the marginal value of investment xt at

time t. However, this does not mean that frustration does not affect the inter-temporal

marginal value of investment. Indeed, the relevant objective function to consider at time t

is F (xt, ft) = e−ϕ(xt,t)U(xt, ft). The effect of xt is inter-temporal by nature as an increase in

xt today changes the probability of continuing tomorrow. Even though today’s frustration

cost is sunk, as xt does not affect v(ft), it affects the probability of still being frustrated to-

morrow. Frustration impacts the marginal utility of investment because Fxf > 0. Solving

the optimization problem G.O given the specification described here, (see supplemental

appendix A.1) yields the following Proposition:

Proposition 2. Let Ω∗
C = 1

Uxx

(
U∗
ff − (ρ+ γ · x∗ + 2δ)

γU∗
f

ρ+γ·x∗+δ

)
.

1. An increase in frustration leads to an increase (decrease) in investment provision if

and only if Ω∗
C < (>)0,

2. The system exhibits saddle path stability as long as Ω∗
C > −δ(ρ+ γ · x∗ + δ).
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Ω∗
C and Ω∗

A share the same structure. On the one hand, the potential future emotional

cost U∗
ff remains. On the other hand, the temporal complementarity between frustration

and investment is now composed of another factor: the prospective emotional relief effect. It

represents how effective additional effort is at avoiding the additional emotional cost a new

failure would entail. More precisely, it is composed of the shadow cost of frustration at the

steady state, representing the marginal utility cost of increasing frustration multiplied by

γ, the marginal effect of investment on the arrival rate of success. As such, the prospective

emotional relief effect depends on how effective investing is at increasing the odds of success

and how much the potential increase in frustration will decrease utility.

The fact that the prospective emotional relief effect is multiplied by (ρ+γ ·x∗+2δ) shows

that the same long versus short-term emotional trade-off exist in Ω∗
C and Ω∗

A. In general, the

sign of Ω∗
C will determine the system’s dynamics, and the decision-maker will face a similar

trade-off as with Ω∗
A. As such, I will not spend time on it. However, contrary to the previous

section, where appraisal tendencies could influence investment either way, environment

controllability can only increase the investment level when frustration rises. This aligns

with the psychological literature (Smith and Ellsworth, 1985; Lerner and Keltner, 2001).

3.3 Practical Implications of the framework

Hypothesis Testing: The fact that an emotional trade-off can exist between the emo-

tional cost, the prospective emotional relief and the appraisal tendency effect has important

implications for the study of emotions. Research in economics and psychology often uses

discrete emotion types to study their impact on behaviour, such as the effect of anger or

fear on certain behaviours. This section shows that attaching a typical action to an emo-

tion can lead to misleading behavioural implications. Positive appraisal tendencies and a

high control belief are associated with anger, and these two factors positively affect the

change in the investment level, which fits insights from the psychological literature. How-

ever, the two factors’ influence will only result in an actual increase in the investment level

when the emotional cost effect is relatively low enough. As such, automatically associating

anger with an increase in investment to solve a situation might be misleading and lead to

incorrect experimental hypotheses. The effect of anger on investment levels comes from a

trade-off that can go in either direction, depending on the person and the situation. On

the other hand, the effects of emotional cost and appraisal tendencies align in the case of

fear, which allows for clearer predictions about how it influences behaviour. This effectively

rationalises the empirical pattern of the literature showing that fear’s appraisal tendency
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systematically translated into behavioural implications while anger’s one did not. Emo-

tion revealed? Standard economic datasets have, in general, information about what

people do or what they buy. The fact that anger and sadness are sometimes behaviourally

equivalent can also be problematic when trying to infer which emotion was triggered by

an event. As such, one cannot make a one-to-one revealed preference argument about

behaviour and implied emotions.

The decision environment matters. Emotional reactions are triggered by the ap-

praisal of the environment. This is good news for experimentalists as they effectively

control the decision environment and, consequently, the appraisal of it. As such, it is rela-

tively straightforward to develop an experimental hypothesis by varying the environment.

For example, in simpler two-period experiments one can vary features such as γ, π, or the

decision timing for the decay rate.

The next section studies how one can approach emotions’ dynamics to infer valuable

information about how they will impact behaviour on non-experimental data. This starts

with studying the decision environment and the effect of the decision-maker’s action on

the frustration law of motion and its stochastic structure.

4 Illustration

This part aims to provide an illustration that fits the model’s set-up and test its building

blocks. It also shows how one can use an event-based approach to emotion to get meaningful

information about the emotional process to which individuals respond. To do so, I use

Major League Baseball pitching data to study the effect of frustration accumulation on

pitcher behaviour. Pitchers, are part of the defending team and throw the baseball at

another teammate, called the catcher. Between these two players is a third player called

the batter, who is in the offensive team and tries to score points. The pitcher aims to

prevent the batter from scoring points by pitching balls that are hard for the batter to hit.

The primary dependent variable for the analysis is pitch velocity, arguably the variable

over which the pitcher has the most control and which can be considered a natural measure

of effort (or investment). Moreover, it has a natural interpretation. Faster pitches should

increase the odds of success until the pitcher loses precision. As I argue below, pitchers

should always throw their pitches at an optimum speed, given a pitch type and a strategic

environment. As such, one can interpret any significant frustration coefficient as over- or

under-investment relative to the optimal level with the appropriate control strategy.
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Isn’t Baseball a strategic game? It is true that changing the speed of the pitch

might be a strategy to surprise the batter. However, baseball culture has developed so

that pitches with significant differences in speed are also categorised differently because

the catcher and the pitcher must communicate them in sign language.21 Each category

is called a pitch type and differs in terms of speed, variations in release point, spin, and

mechanics that affect the ball’s velocity. For example, the slow version of a fast ball is

called a change-up and is, as such, categorised differently. Much of a pitcher’s strategy is

expressed through the strategic randomisation of the type of pitch he is throwing to catch

the batter off-guard. From a game theoretic point of view, a pitcher’s optimal strategy

should be a probability distribution over the pitches in his repertoire, which is a mixed

Nash equilibrium. As my model does not consider such strategic considerations, I control

for the different pitch types and eliminate this strategic component of the game from my

analysis. In other words, my analysis exploits the fact that, within pitch type, speed should

not be affected by strategic consideration.22

Objective of the analysis

The illustration shows one can proceed to carry out an empirical analysis using an event-

based approach to emotion. I structure this approach around three axes. The first axis

evaluates the rational incentive structure surrounding pitch velocity choices. Given baseball

rules, it essentially determines the pitcher’s objectives and establishes a control strategy

to control for other factors that can influence the pitch speed. These include pitch type,

strategic considerations, bayesian updating about one’s ability, other emotional processes

etc...

The second axis identifies the emotional incentive structure surrounding pitch velocity

choices. If first defines what can be considered a failure in baseball, and how frustration

is likely to accumulate. Next, I also measure the implication of changing pitch velocity

on the probability of success, given that it is a key element of how people would react

to frustration. This analysis then allows us to understand exactly which effect (appraisal

tendency, emotional cost and prospective emotional relief effect) is at play.

The third axis estimates the effect of frustration accumulation on pitcher behaviour. I

then explore the features of frustration dynamics and how they relate to the building block

21Catchers must be prepared for the type of pitch the pitcher is throwing, otherwise it would be too
hard to catch. Using signs, the catcher proposes a pitch type that the pitcher should throw and prepares
accordingly to catch it.

22Although I carefully control for possible additional confounders.

15



of the model. I focus on frustration’s temporal effect and the prospective emotional relief

effect. Finally, I also explore the relation between frustration sensitivity (or whether pitch-

ers react to frustration) and their average career performance in supplemental appendix

F.3.

The dataset

The data set consists of measurements for every pitch thrown during the 2010-2019 period

retrieved on a Major League Baseball (MLB) run website for more than 7 million pitches.

Physical information about the pitches is gathered through the PITCHf/x system for the

2010-2015 period and Statcast for 2015-2019. These two systems are automated camera

systems developed to analyse player’s movements. Physical information about the pitches

includes speed at release, location of the pitch at different points in time, spin rate, spin

angle, and acceleration. The dataset includes detailed game information, including game,

pitcher and batter identifiers, base occupancy, as well as strike, ball and out counts. The

MLB also provides information about the batter team’s change in run expectancy before

and after each pitch.

4.1 Baseball Rules and Pitchers’ objective

I first give an extremely summarised version of Baseball rules. The basic unit of play is

called an inning, and a game typically includes nine innings. An inning comprises two half-

inning periods where attacking and defending teams switch roles. There are nine players

in each team. The game takes place in a field with four white rectangle bases forming a

square.

The batter, who is in the offensive team, aims to hit the ball to advance as far as possible

around four bases while the defending team tries to get the ball back to the catcher. If

the batter does not reach the fourth base (home plate), he waits on one of the bases for

the next opportunity to advance during the following plays. A base with a player on it is

“loaded”. Once a batter is out or on a base, one of his teammates replaces him, and the

process starts again. If one offensive team member goes around the four bases, the team

scores a run (a point). The team with the most runs at the end of the game wins.

A pitcher’s goal is to prevent the other team from scoring runs. He does this by throwing

pitches that are difficult for the batter to hit and to get batters out as soon as possible.

Indeed, when three batters are out, the half-inning ends, thus preventing the other team
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from scoring further runs. The three more important pitch outcomes are (1) balls: if the

pitch is not thrown correctly, it is considered a ball, and four balls grant first base to the

batter. (2) strikes, if the batter did not hit a valid pitch in a valid area, the batter is out

with three strikes;23 (3) the batter bats the pitch in a valid area: it is in game.

4.2 Estimation Strategy

Even though it is impossible to develop a quasi-experiment in this dataset, the sheer amount

of information available for every pitch makes it possible to control for most confounders

that could bias the analysis. Before investigating the potential effect of frustration on

speed, one must review all the possible reasons why a pitcher might vary the speed of a

given pitch. Figure 1 gives a schematic view of the possible influences one must control

and Table 1 describes the corresponding controls used in the regressions.

Figure 1: Schematics of factors that can influence pitch velocity

SpeedFrustration

Acc.

Strategy

Players

Char.

Physical

Feedbacks

Other

Emotions

Bayesian Updating

→ # Success-Failure

- Fatigue

→# Attempt

Score Difference

Inning

Pitch Type

Game State FE

- Expectation Based

→∑
i<T ∆iE(Runs)

Player-Game FE

Batter FE

Ft

Note: Schematic view of the possible confounders of the analysis. Note that
some elements could also be in other categories, and the links between
categories are not represented. I mention these overlaps between categories
in the discussion below.

∑
i<T ∆iE(Runs) represents the difference in run

expectancy between the current throw and the beginning of the half-inning.

Strategy: Much of a pitcher’s strategy is expressed through the strategic randomisa-

tion of the type of pitch he is throwing to catch the batter off-guard. To control for this,

23A pitch batted in a non-valid area is called a foul.
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I use MLB’s pitch type classification.24 Other strategic interactions might also affect the

pitches’ speed. Suppose a game or plate appearance is not particularly competitive. In

that case, the pitcher might decide to reduce the speed of his pitches to save his arm. The

Game State fixed effect is a categorical variable that tries to describe the current state of

an inning comprehensively. The objective is to capture Game-State dependent strategic

considerations affecting the speed of a given throw. Each category is a 6-digit number,

representing the number of outs, strikes and balls, whether a player is on first, second or

third base.25 Finally, I also control for Batter and Pitcher × Game fixed effect, inning

number and difference in score to account for the plausible strategic impact on player’s

behaviours.

Physical feedback: Belief updating might play an essential role in a pitcher’s pitch

velocity decision. First, a player might update his beliefs about his current ability by

looking at the performance of his throws. As such, I create a variable counting the num-

ber of successes and failures. Assuming that the agents consistently update failures and

successes, this should proxy the effect of Bayesian updating. It also allows for controlling

for asymmetric updating where the agent puts relatively more weight on bad news, for

example. I also control for the number of throws the pitcher already threw in an inning to

consider fatigue.

Other emotions: The major reason why one cannot exploit some quasi-experimental

design with this dataset is that there are no neutral events in terms of emotion. In par-

ticular, a failure will be frustrating and a success elating. As such, controlling the effect

of emotions stemming from elating events is important. Emotional triggers are usually

belief dependent (Keltner and Lerner, 2010). One natural moment to consider in the be-

lief distribution is the expectation. To control for other possible emotions, I include ∆

Exp., which represents the difference in the opposing team’s point expectation between

the current throw and the beginning of the half-inning. The variable is computed by the

MLB.26 As such, ∆ Exp. together with Bayesian updating, should capture the effect of

other belief-based emotions.

Player Characteristics: Sometimes, physical characteristics can influence pitches’

24They use a player-specific neural network called PitchNet to classify pitches. The accuracy reaches
78.30% for rookies and 96,25% for regular players. See Sharpe and Schwartz (2020).

25For example, a Game State variable being equal to 213101 describes an inning with two outs, one
strike, three balls, one player on first base, no player on second and one on the third.

26Computing the expected number of runs for any game state is relatively straightforward as it is simply
the historical average number of runs that are scored until the end of the innings given the current game
state.
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velocity. Temperature, weather, or a pitcher’s current condition can significantly impact

a pitcher’s performance. However, it should also be easily controlled with the Pitcher ×
Games fixed effect.

Table 1: Controls for regressions

Possible factors Controls

Fatigue # Attempt : Number of pitches in Inning
Player’s current ability Game × Player FE
Strategy on a given game Game × Player FE
Strategy in a Game State Game State: #Out × #Strikes × #Balls × Bases load
Batter characteristics Batter FE
Pitch type Ptype: Pitch type FE
Score Difference in Score
Score in inning ∆ Inscore: Difference in score in the inning.
Inning Inning FE
Bayesian Updating # Failures and Successes
Other expectation-based emotions ∆ Exp.: Net Difference in exp. since start of Inning

4.3 Failures and the frustration accumulation process

I now analyse the emotional incentives surrounding pitch velocity decisions and how to

measure frustration. Let Rt be the score expectation of the opposing team during this

half-inning right before throw number t, where t ≤ T and T are the numbers of consecutive

throws the pitcher does during this half-inning. Given that the pitcher’s objective is to

prevent the other team from scoring runs, he always wants to have Rt+1 − Rt < 0, where

runst indicates the number of runs the other team scored at time t. I can then classify

pitches’ outcomes by their effect on the expected score. This yields the following definition

of failure:

Definition. A pitch a time t is a failure if it increases the run expectancy of the opposing

team, that is, if Rt+1 −Rt ≥ 0.

Now, I need to measure the level of frustration associated with any failure in the game.

I consider the difference in run expectancy before and after a failure as my frustration

proxy. Doing this allows me to get two desirable properties. First, the measure is in runs

and is easily interpretable. Second, it objectively measures the frustration intensity, as

different failures can have other repercussions. For example, a ball (an invalid throw) at
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the beginning of an inning will have a negligible impact on the expected game score, while

a home run or a fourth ball with three bases loaded can be decisive. 27 Accordingly,

the measure reflects that minor mistakes are less frustrating and that the same event can

trigger different levels of frustration depending on the state of the game28.

Definition. The frustration triggered by a failure at time t, ∆ft is:

∆ft = Rt+1 −Rt ≥ 0 (8)

Next,29 following the model’s set-up, the frustration level increases by the (positive)

difference in run expectancy in case of a frustrating event and goes to 0 following success.

Let Ct represent the set of time period s that are in a string of consecutive failure before

t, that is:

Ct = {s < t : ∆fs ≥ 0, and∀s′ : t > s′ ≥ s : ∆fs′ ≥ 0}

Definition. The stock of frustration at the beginning of period t ≤ T , Ft is:

Ft =
∑
s∈Ct

∆fs

As such, in case of consecutive failures, the measured frustration law of motion is:

Ft+1 = ∆ft + Ft, (9)

while Ft+1 = 0 if there is a success at time t, as Ct+1 is empty.

Note that the frustration does not directly depend on the pitcher’s velocity decision

but only on the consequences of those actions and the state of the game. As such, the

frustration increase in case of failure do not depend on the pitch’s speed. In other words, the

frustration law of motion is a frustration accumulation process with exogenous increments,

as in supplemental appendix B. In particular, it means that the emotional cost effect will

27Indeed, some baseball fans would even be reluctant to consider a ball at the beginning of an inning
as frustrating. A ball at the beginning of an inning would increase frustration by 0,034. This is negligible
but still worse than any other non-frustrating outcome (strikes, fouls, ...)

28Notice that the measure can sometimes miss subtleties specific to the throw. For example, it is possible
to have a positive difference in run expectancy after flawlessly executed pitches where the rest of the team
did not live up to the pitcher’s performance or for failures where the pitcher was at fault. In other words,
this measure only takes the effect of the pitch on the game’s outcome into account without characterising
who is responsible for the poor performance. However, the measure should be a good proxy for the
frustration triggered.

29The previous definition also considers a foul ball after two strikes as a failure, but with a frustration
value of 0. As such, it is a neutral event that does not break strings of consecutive failures.
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not affect how the pitcher will react to frustration, as it is unlikely that he will feel more

or less frustrated when throwing harder. I summarise this in the following remark:

Remark. The pitcher’s frustration increases with exogenous increments that do not depend

on the speed of the pitches. As such, the emotional cost effect does not affect the velocity

of pitches.

Moreover, this measured law of motion does not feature a decay rate δ, while the actual

law of motion does. I will get back to this when studying frustration’s temporal effect

in section 4.6. Figure 2 gives insight into how the frustration stock is distributed in the

dataset.

Figure 2: Frustration level histogram

Frustation Level

F
re

qu
en

cy

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

Frustration stock distribution. I do not represent observation with frustration levels higher than 3 (less
than 0.05% of the observations).

Having a high frustration stock is not common. This is natural. First, the definition

21



chosen is somewhat extreme, as frustration goes to 0 after any success. An alternative could

be to have only a share of Ft remaining after a successful pitch. However, determining

the level of the share seems arbitrary. I prefer to show that the results hold under the

most extreme assumption, which would underestimate the effect of frustration. Second,

frustration is measured in runs. As such, it seems natural that professional pitchers do not

concede high numbers of consecutive runs without being replaced.30

4.4 Pitch velocity’s effect on the success probability around the

optimum

Understanding how pitch velocity influences the probability of success is important to

understand whether the prospective emotional relief effect will influence velocity decisions.

Intuitively, faster pitches are more challenging to hit, so speed should positively affect the

odds of success and the chance of getting emotional relief. On the other hand, faster pitches

are also harder to control, and less precise. To settle this question, the following regression

estimates the impact of speed on the probability of success.

Table 2 presents the result of an OLS regressing the speed and the log of the speed of

pitches on the probability of success. Speed has a statistically significant but economically

small effect on the likelihood of success. Increasing the release speed by one per cent

increases the chance of success by less than 0.0014%. To compare this to natural speed

variations in the data, one can consider the average game and pitcher-specific standard

deviation in speed at the inning level. Table F.1.1 in supplemental appendix F.1 presents

this standard deviation for different pitch types. The standard deviation is, in general,

around 1. As such, according to columns (3) and (4), a pitcher would need to increase

their pitch speed by five standard deviations to increase their probability of success by a

negligible 1%. Of course, this estimate should be considered as a local effect, as pitchers

cannot significantly increase their pitches’ speed without losing precision or risking injury.

Given the low adjusted R2, velocity does not seem to be a credible explanatory factor

to predict success. Overall, Table 2 results are not surprising. MLB pitcher’s market is

competitive, making it hard to believe that a pitcher would not throw at the best of their

capabilities given the strategic environment.

Moreover, supplemental appendix F.2 shows a regression result measuring how frustra-

30Note that a high frustration level is not necessarily highly correlated with a high probability of the
pitcher getting replaced. This is because frustration goes to 0 after a success. Also, a similar increase in
frustration can happen over one or many failures.
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Table 2: Effect of Speed on probability of success

Dependent Variable: P(Success)
Model: (1) (2) (3) (4)

Variables
Speed 0.1463∗∗∗ 0.1463∗∗∗ 0.0020∗∗∗ 0.0020∗∗∗

(0.0283) (0.0097) (0.0003) (0.0001)
# Failures 0.0193∗∗∗ 0.0193∗∗∗ 0.0193∗∗∗ 0.0193∗∗∗

(0.0006) (0.0002) (0.0006) (0.0002)
# Successes -0.0176∗∗∗ -0.0176∗∗∗ -0.0177∗∗∗ -0.0177∗∗∗

(0.0007) (0.0002) (0.0007) (0.0002)
Attempt 0.0058∗∗∗ 0.0058∗∗∗ 0.0058∗∗∗ 0.0058∗∗∗

(0.0004) (8.77× 10−5) (0.0004) (8.78× 10−5)
∆ Exp. -0.0209∗∗∗ -0.0209∗∗∗ -0.0210∗∗∗ -0.0210∗∗∗

(0.0027) (0.0015) (0.0027) (0.0015)
∆ Score -0.0050∗∗∗ -0.0050∗∗∗ -0.0050∗∗∗ -0.0050∗∗∗

(0.0005) (0.0003) (0.0005) (0.0003)
∆ Inning Score 0.0081∗∗∗ 0.0081∗∗∗ 0.0081∗∗∗ 0.0081∗∗∗

(0.0027) (0.0015) (0.0027) (0.0015)

Fixed-effects
Ptype Yes Yes Yes Yes
Game State Yes Yes Yes Yes
Player × Game Yes Yes Yes Yes
Batter Yes Yes Yes Yes
Inning Yes Yes Yes Yes

Fit statistics
Observations 7,199,443 7,199,443 7,199,443 7,199,443
R2 0.05682 0.05682 0.05683 0.05683
Within R2 0.00781 0.00781 0.00782 0.00782

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Columns (1) and (3) are clustered at the pitcher level and columns (2) and (4) are
clustered at the game level. Columns (1) and (3) Speed measure is the pitch’s velocity
when released by the pitcher in mph. Columns (3) and (4) Speed measure is the nat-
ural logarithm of the same variable. # Failures and # Successes count the number of
successes and failures since the beginning of the inning. Attempt measures the number
of pitches the pitcher has thrown since the beginning of the game. ∆ Exp measure the
change in the opposing team’s expected score since the beginning of the inning. ∆ Score
measures the current difference in score, while ∆ Inning Score measures the change in
score since the beginning of the inning. Ptype is a categorical variable indicating the
pitch type. Game State is a categorical variable indicating the number of batters out,
the number of balls, strikes and whether a player is on base 1, 2 or 3. Player × Game
indicates who is pitching during which game. Batter indicates who is currently facing
the pitcher.
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tion affects the quality of the pitches.31 In general, pitch quality tends to decrease with

higher frustration levels, even though this decrease in quality is marginal. As such, the

controllability of the environment does not seem to be the main driver of the emotional

reaction, as frustration would increase pitch quality in that case. The following remark

summarises the result of this section.

Remark. Given that pitch velocity does not affect the probability of success in an eco-

nomically meaningful way, the emotional relief effect will not affect speed choices when

frustration increases.

4.5 Frustration and pitcher’s preferences for speed and estima-

tion strategy.

Now that the emotional and rational incentive structure is set, I can describe the pitcher’s

maximisation problem. The catcher and pitcher first choose the pitch they want to play. I

focus on the pitcher’s expected utility once this decision is made. Let st denote the game’s

strategic state at time t and let ust measure the success utility of a pitch and a state of

the game st. Let x(st) be the pitch speed, with x∗(st) = 0 being the optimal speed given

the pitch type and the strategic environment st. Let π̄st be the probability of success

associated with this optimal speed.32 As the previous section shows, local deviation from

the optimal speed does not seem to affect the probability of success meaningfully. As such,

in the utility described in (10), local deviations from the optimal speed do not affect the

exogenous probability of success π̄st . Finally, I represent the possible appraisal tendency

effect of frustration on speed by µ(xt, ft). I assume that µ(xt, 0) = 0 and µxf > (<)0 if

there are positive or negative appraisal tendencies. The expected utility is:

U(xt, ft, st) = π̄st · ust + µ(xt, ft)− v(ft)− c(xt) (10)

Equation (10) shows the challenges of this illustration: the success probability and util-

ity are game-state dependent. As such, it is capital to have an efficient control strategy

as described in figure (1). Supplemental appendix (F.5) solves a general intertemporal

31The quality of the pitches is determined using a machine learning algorithm. I use the physical
characteristics of the throw as an ex-ante predictor of success to measure their quality. See supplemental
appendix F.2 for more details on this.

32One can consider that before normalisation, the optimal speed x∗
st solves π̄

′(x)ust = c′(xt).Where π̄(·)
is some hump-shaped function giving the probability of success for a given speed. The regression considers
local deviation from this optimum and π̄ = π̄(x∗

st).
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stochastic maximisation problem with instantaneous expected utility (10). The model

shows that given that (1) the probability of success is exogenous and (2) frustration in-

creases in exogenous increments, frustration only affects the speed of decisions through the

appraisal tendency effect. Any deviation from the optimal speed can directly be attributed

to the appraisal tendency effect. Moreover, given that the frustration stock is independent

of the pitch velocity, frustration has a static effect. As such, while the pitcher’s behaviour

can reflect the effect of frustration accumulation, it will not be affected by how he antici-

pates and manages future frustration. The following remark concludes and clarifies what

emotions are affecting behaviour.

Remark. Frustration affects pitch velocity choices for a given strategic state of the game

through the appraisal tendency effect.

Estimation Strategy

Given this, I estimate the following regression using a multi-way fixed effect estimator:

Speedgpti = β0 + β1Fgpti + β2∆Exp.gpti

+ β3Game Stategpti + β4PTypegpti + β5Battergpti + β6∆Scoregpti + β7∆InScoregpti

+ β8#Attemptgpti + β9#Failuresgpti + β10#Successesgpti

+ β11αgp + β12αi

Where the subscripts g denote game, p denotes pitcher, t denotes the throw number,

and i is the inning, αgp is the Player ×Game fixed effect, αi is the inning fixed effect.

4.6 Results

4.6.1 Frustration’s effect on pitchers’ behaviour

Table 3 presents the main result of this section. One additional unit of frustration Ft

(measured in runs) increases the speed of pitches by 0.12 mph (0.19km/h). Depending on

the type of pitch thrown, this accounts for an increase in speed between 0.08% to 0.17%.33

The careful strategy to control for cofounders also seems to work with an adjusted R2 of

0.912.34.

33See table F.1.2, in the supplemental appendix, for more detailed results
34Admittedly, the frustration measure has a negligible impact on the adjusted R2 of the remaining

variance to explain. This is unsurprising and similar to the explanatory power in causal identification
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To better understand the magnitude of the effect, let us compare it to the impact of

fatigue, as defined in Table 1. The effect of one standard deviation increase in frustration

(0.27 runs) accounts for 45.72% of the magnitude of one standard deviation increase in

the fatigue gained during an inning by a pitcher (5.16 throws). Suppose one considers

the standard deviation of frustration for positive frustration values only. In that case, the

effect rises to 64.70 % of one standard deviation increase in fatigue35. As such, frustration

seems to have a sizable impact on pitcher’s behaviour.

Emotional Relief

One crucial building block of the model is that success brings emotional relief, in that

frustration’s effect disappears after success. Notice the frustration coefficient is positive

and significant while controlling for ∆ Exp.. In other words, the impact of frustration

cannot be captured by a net effect of an elation/frustration function that ∆ Exp. (the net

difference in run expectancy since the beginning of the inning) should capture. One can

interpret this as evidence of an asymmetric drop in Ft after a success. There must be a

relief and accumulation effect, as in Ft’s construction. Whether frustration really goes to 0

after success is an open question, however if anything this would lead to an underestimation

of frustration’s effect on speed.

Temporal Effects

Finally, the central insight from this paper is that emotions are inter-temporal processes:

frustration accumulates and decays with time. Table 1 analysis shows that Ft, affects

pitchers’ behaviour. However, it does not explore the temporal effect of frustration accu-

mulation. Ft can increase by the same amount over one or several failures. If frustration

has a temporal effect, then the marginal frustration ∆ft gained several failures ago (as

defined in equation (8)) should still affect pitches’ speed in case of consecutive failures.

As such, I first construct a set of dummy variables indicating whether there were more

than 1,2 and up to 9+ consecutive failures. I then interact the dummy, indicating one or

more failures with frustration gained last period, two or more failures with the frustration

gained two periods ago and so on. Generally, for an observation at time t, the interactions

are:

techniques after differencing away the trends.
35This is a sensible strategy as the frustration stock equals 0 in 80% of the sample
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Table 3: Effect of Frustration on Velocity

Dependent Variable: Velocity
Model: (1) (2)

Variables
Ft 0.1221∗∗∗ 0.1221∗∗∗

(0.0048) (0.0034)
# Failures 0.0189∗∗∗ 0.0189∗∗∗

(0.0014) (0.0008)
# Successes 0.0345∗∗∗ 0.0345∗∗∗

(0.0016) (0.0007)
Attempt -0.0143∗∗∗ -0.0143∗∗∗

(0.0012) (0.0003)
∆ Exp. 0.0270∗∗∗ 0.0270∗∗∗

(0.0071) (0.0062)
∆ Score 0.0007 0.0007

(0.0021) (0.0012)
∆ Inning Score -0.0887∗∗∗ -0.0887∗∗∗

(0.0075) (0.0060)

Fixed-effects
Ptype Yes Yes
Game State Yes Yes
Player × Game Yes Yes
Batter Yes Yes
Inning Yes Yes

Fit statistics
Observations 7,199,443 7,199,443
R2 0.91726 0.91726
Within R2 0.00235 0.00235

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Column (1) is clustered at the pitcher level, and column (2) at the game level. Ft measures the
change in the other team’s expected score during the current and (possibly empty) sequence of
consecutive failure. # Failures and # Successes count the number of successes and failures since
the beginning of the inning. Attempt measures the number of pitches the pitcher has thrown
since the start of the inning. ∆ Exp measure the change in the opposing team’s expected score
since the beginning of the inning. ∆ Score measures the current difference in score, while ∆
InScore measures the change in score since the beginning of the inning. Ptype is a categorical
variable indicating the pitch type. Game State is a categorical variable indicating the number
of batters out, the number of balls, strikes and whether a player is on base 1, 2 or 3. Player ×
Game indicates who is pitching during which game. Batter indicates who is currently facing the
pitcher.
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1[#Consecutive Failures ≥ n]×∆ft−n

These interactions allow the nth frustration lag to have an effect only if there were at

least nth consecutive failures, like in the model. The n > 1 coefficients should be significant

if frustration accumulates over time. Moreover, remember that the measured frustration

law of motion (9) does not include a decay rate. As such, if frustration decays with time,

the magnitude of the interactions’ coefficients should decrease with the number of lags.

Intuitively, if it decays, the frustration gained five pitches ago will have a lower impact on

speed than the frustration stemming from the last failure.

Figure 3: Temporal Effect of Frustration
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Each dot on the graph represent the interaction term 1[#Consecutive Failures ≥ n]×∆ft−n for 1 ≤ n ≤
8. The 9th dot represents the interaction between lags of ∆f greater or equal to 9 and the dummy indicating
more than nine consecutive failures. The confidence interval displayed on the graph are associated with
5% confidence level. Clusters are at the player level.

Figure 3 represents the value of the coefficients of the interactions and their confidence

intervals (95%) for an OLS with these interactions, the dummy indicating the number of

cumulative failures and the set of control presented in Table 2. Frustration seems to have

a temporal effect, with frustration from up to four failures ago still significantly impacting

speed (at a 5% significance level). Second, frustration also seems to decay as the coefficient

value gradually decreases with non-significant values if failures occurred more than three

throws ago, indicating a substantial decay rate of frustration over time.
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Empirical conclusion:

Overall, the analysis points to appraisal tendencies as the main culprit behind the emotional

reaction. Frustrated pitchers seem to throw faster because they have a higher marginal

utility to do so. In supplemental appendix F.3, I carry out the same analysis at the

individual level and take a closer look at frustration’s effect on the pitches’ quality. A

higher effect of frustration on speed is associated with a more negative impact on quality.

This rules out any rationale for saying that frustration motivates pitchers to reach a better

optimum and strengthens the conclusion that appraisal tendencies are the source of the

changes. In the same supplemental appendix, I show that frustration’s effect on quality

also correlates with lower career-level performance statistics. This indicates that frustration

accumulation is more than an interesting behavioural phenomenon and could have labour

market implications by affecting pitchers’ productivity.

5 Conclusion and Discussion

This paper establishes a framework to study the inter-temporal effects of emotions on

investment. I find that the impact of frustration on investment depends mainly on the

relative force of the negative emotional cost, appraisal tendencies and the prospective

emotional relief effect. More importantly, negative emotions do not always trigger negative

consequences in terms of investment, and positive appraisal tendencies stemming from them

are not necessary nor sufficient to have a positive effect of frustration on motivation. While

in line with the psychological literature, the framework shows that one must be cautious

when inferring behavioural implications from negative emotions.

Overall, the empirical investigation seems to confirm that pitcher’s behaviour is influ-

enced by frustration and that frustration accumulates and decays. Frustration appears to

increase pitches’ speed at the average and individual levels. For pitchers who are the most

affected, frustration seems to affect pitcher’s career-level performance and productivity.

This highlights the relevance of studying the dynamics of emotions in economics.

The framework presents two assumptions that require some discussion. First, the

decision-maker is forward-looking. This assumption is not innocuous but standard in

the literature (Loomes and Sugden, 1982; Bell, 1982, 1985; Loomes and Sugden, 1986;

Caplin and Leahy, 2001). Yet, while individuals anticipate their emotions reasonably

well, they are also prone to systematic mistakes (Loewenstein, 1999). Nonetheless, the

mechanisms and trade-offs presented here are surprisingly intuitive and show that some
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”forward-lookingness” must be present to get intuitive behaviours. For example, if an agent

cannot predict that her frustration will disappear after a success, investing more effort to

solve the problem would not make sense.

Second, the decision-maker is time-consistent. A decision-maker might indeed decide

to use some commitment device to limit the action-set of her future frustrated self. How-

ever, while intuitively appealing, the approach leads to counterintuitive conclusions. In

particular, a self with f = 0 will always ignore her action’s effect on future frustration

accumulation when setting her investment plan. Indeed, her only criteria for evaluat-

ing future investment will be her current preference relation, which does not feature any

frustration. Similarly, a self with f > 0 will also neglect the positive impact of getting

emotional relief on utility. As such, while interesting, it is not straightforward to bring and

conceptualise time-inconsistent behaviour stemming from emotional dynamics. I see this

work as a helpful benchmark and stepping stone for future work in that area.
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Supplemental Appendix for

Negative Emotion Accumulation and Personal

Motivation

Clément Staner∗

December 2, 2024

A Proofs and solutions to the main model

A.1 Solution to the main model

In this section, I solve the general version of the model. To make the problem more

tractable, let me introduce the following state variable: Φt = ϕ(xt, t) =
∫ t

0
γxsds + rt,

where r is the time-invariant discount rate, which might include a Poisson law fixed arrival

rate π. In section 3.1, I have γ = 0 and r = ρ+ π. In section 3.2, γ > 0 and r = ρ. I can

then rewrite the maximisation problem in the following way:

V = max
xt

∫ ∞

0

e−ΦtU(xt, ft)dt

ḟt = xt − δft

Φ̇t = γ · xt + r

ft0 given

Φ0 = 0

The Hamiltonian of this problem is:

∗Department of Economics at Heidelberg University. E-mail: clement.staner@awi.uni-heidelberg.de.
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H̃(xt, ft, λ̃t, µ̃t) = e−ΦtU(xt, ft)− λ̃t(xt − δft)− µ̃t(γ · xt + r)

And the first order conditions of the maximisation problem are:

H̃x(·) = e−ΦtUx(xt, ft)− λ̃t − µ̃tγ = 0

H̃f (·) = e−ΦtUf (xt, ft) + δλ̃t =
˙̃λt

H̃Φ(·) = −e−ΦtU(xt, ft) = ˙̃µt

lim
t→∞

H̃(·) = 0

Where the last equation is a general transversality condition suited for endogenously

discounted inter-temporal maximisation problem see (Michel, 1982; Barro and Sala-i Mar-

tin, 2004). Next, notice that:

dH̃(·)
dt

= ẋtH̃xt(·) + ḟtH̃ft(·) +
˙̃ΦtH̃Φt(·)− ˙̃µtΦ̇t − λ̇tḟt = 0

Together with the transversality condition, this means that on the optimal path, the

maximised Hamiltonian H̃∗(·) is always equal to 0. As such, I can rewrite:

µ̃t =
e−ΦtU(xt, ft)− λ̃t(xt − δft)

γ · xt + r

Let me introduce the following variables : µ̃t = e−Φtµt and λ̃t = e−Φtλt.

The first order conditions become:

Ux(xt, ft)− λt − µtγ = 0 (A.1)

Uf (xt, ft) + (δ + r + γ · xt)λt = λ̇t (A.2)

− U(xt, ft) + (γ · xt + r)µt = µ̇t (A.3)

lim
t→∞

H̃(·) = 0 (A.4)

The transversality condition (A.4) then implies that:

µt =
U(xt, ft)− λt(xt − δft)

γ · xt + r
(A.5)
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To make the following computations more tractable, let me drop the time index and

the argument of the expected utility U(·) and of its derivatives. Inserting (A.5) in the first

order condition (A.1) to solve for µ and λ yields:

Ux = λ+ γ
U − λ(x− δf)

γ · x+ r

⇐⇒ (γ · x+ r)Ux = (γ · x+ r)λ+ γ (U − λ(x− δf))

⇐⇒ (γ · x+ r)Ux − γU = (γ · x+ r − γ(x− δf))λ

⇐⇒ λ =
(γ · x+ r)Ux − γU

r + γδf
(A.6)

If I insert this result back in (A.5):

µ =
U − λ(x− δf)

γ · x+ r

=
U

γ · x+ r
− (x− δf)

γ · x+ r
λ

=
U(γ · x+ r)− (x− δf)(γ · x+ r)Ux

(r + γδf)(γ · x+ r)

=
U − (x− δf)Ux

(r + γδf)

As such, I can now get the re-express the co-state law of motion µ described in (A.3)

as:

µ̇ = −U + (γ · x+ r)
U − (x− δf)Ux

r + γδf

=
−U(r + γδf) + (γ · x+ r)(U − Uxḟ)

r + γδf

= −
γU(x− δf)− (γ · x+ r)

(
Uxḟ

)
r + γδf

µ̇ = −λḟ (A.7)

Let me now differentiate the first order condition A.1 with regards to time to get the

Euler equation :
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Uxxẋ− λ̇− γµ̇+ ḟUxf = 0

⇐⇒ ẋ =
1

Uxx

(
λ̇+ γµ̇− Uxf ḟ

)
(EE)

The Euler equation (EE), together with the frustration law of motion (2) form the

canonical system of the inter-temporal maximisation problem. Next, let me linearise the

system around the steady state to study its dynamics. The linearised system is given by:(
˙̂xt
˙̂
ft

)
= J∗

(
x̂t

f̂t

)
.

Where the variables denoted by hats are the rescaled investment and frustration, such

that steady state value are normalized to 0. J∗ is the Jacobian of the canonical system

evaluated at the steady-state (x∗, f ∗):

J∗ =

(
∂ẋ(x,f)

∂x
∂ẋ(x,f)

∂f
∂ḟ(x,f)

∂x
∂ḟ(x,f)

∂f

)∣∣∣∣∣
(x,f)=(x∗,f∗)

To get the expression of J∗, I need to compute the value of the derivative of λ in (A.6)

with regard to f and x at the steady state:

∂λ

∂f

∣∣∣∣
(x∗,f∗)

=
∂

∂f

(
(γ · x+ r)Ux − γU

r + γδf

)∣∣∣∣
(x∗,f∗)

= U∗
xf −

γ
(
U∗
f + δλ∗

)
(r + γ · x∗)

(A.8)

∂λ

∂x

∣∣∣∣
(x∗,f∗)

= U∗
xx (A.9)

Next using (A.8) and (A.9), I can differentiate the co-state law of motion (A.2) with
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regards to x and f

∂λ̇

∂f

∣∣∣∣∣
(x∗,f∗)

=
∂

∂f
(Uf + (δ + r + γ · x∗)λ)

= U∗
ff + (δ + r + γ · x∗)∂λ

∂f

= U∗
ff + (r + δ + γ · x∗)

(
U∗
xf −

γ
(
U∗
f + δλ∗

)
(r + γ · x∗)

)
∂λ̇

∂x

∣∣∣∣∣
(x∗,f∗)

=
∂

∂x
(Uf + (δ + r + γ · x)λ)

= U∗
xf + γλ+ (r + δ + γ · x∗)U∗

xx

I can finally compute the elements of Jacobian matrix J∗ using equations (A.6)-(A.9):

∂ẋ

∂f

∣∣∣∣
(x∗,f∗)

=

(
Uxx

∂
∂f

(
λ̇+ γµ̇− Uxf ḟ

)
− Uxxf · (0)

)
U2
xx

=
1

U∗
xx

(
∂

∂f

(
λ̇+ γµ̇− Uxf ḟ

))
=

1

U∗
xx

(
U∗
ff + (δ + r + γ · x∗)∂λ

∂f
+ γδλ∗ + δU∗

xf

)
=

1

U∗
xx

(
U∗
ff + (r + δ + γ · x∗)

(
U∗
xf −

γ
(
U∗
f + δλ∗

)
(r + γ · x∗)

)
+ γδλ∗ + δU∗

xf

)

=
1

U∗
xx

(
U∗
ff + (r + γ · x∗ + 2δ)

(
U∗
xf −

γU∗
f

r + γ · x∗ + δ

))
Where I insert λ∗’s steady-state value determined by (A.2) in the two last lines. Similarly,
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I take the derivative of the Euler equation at the steady state with regard to investment.

∂ẋ

∂x

∣∣∣∣
(x∗,f∗)

=

(
Uxx

∂
∂x

(
λ̇+ γµ̇+ Uxf ḟ

)
− Uxxx · (0)

)
(Uxx)

2

=
U∗
xx

(
U∗
xf + γλ+ (r + δ + γ · x∗)U∗

xx − γλ− U∗
xf

)
U∗
xx

2

= r + δ + γ · x∗

Let Ω∗
f = ∂ẋ(x,f)

∂f

∣∣∣
(x∗,f∗)

. Putting everything together the Jacobian of the system evalu-

ated at the steady-state is:

J∗ =

(
r + δ + γ · x∗ Ω∗

f

1 −δ

)
The eigenvalue of the Jacobian are given by:

µ1,2 =
tr(J∗)±

√
tr(J∗)2 − 4∇(J∗)

2

=
(γ · x∗ + r)±

√
(γ · x∗ + r + 2δ)2 + 4Ω∗

f

2
. (A.10)

Where∇(J∗) is the determinant of the Jacobian matrix J evaluated at the steady-state.

A.2 Proofs

A.2.1 Proposition 1

Let me set γ = 0 and r = π + ρ using (A.10), I get:

µ1,2 =
r ±

√
(r + 2δ)2 + 4Ω∗

f

2
.

In this special case, I have Ω∗
f = Ω∗

A = 1
Uxx

(Uff + (r + 2δ)Uxf )

For (1), consider the optimal path of the frustration associated with the smallest eigen-

value µ1.
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f̂t = keµ1t (A.11)

˙̂
ft = kµ1e

µ1t (A.12)

Where k < 0, because ft0 < f ∗. Using the frustration law of motion to express xt and

substituting (A.11) and (A.12) yields

x̂t = (δ + µ1)k · f̂t

k · f̂t > 0, as such, x̂t, will be increasing in f̂t if

(δ + µ1) > 0

⇐⇒
r + 2δ −

√
(r + 2δ)2 + 4Ω∗

A

2
> 0 ⇐⇒ Ω∗

A < 0

And similarly x̂t, will be decreasing in f̂t if Ω
∗
A > 0. For (2), saddle path stability requires

one positive and one negative eigenvalue. The highest eigenvalue will always be positive.

On the other hand, the lowest will be negative if and only if:

r <
√

(r + 2δ)2 + 4Ω∗
A

⇐⇒ r2 − r2 − 4δ(r + δ)− 4Ω∗
A < 0

⇐⇒ −δ(r + δ) < Ω∗
A

A.2.2 Proposition 2

It is a special case of the general model. It follows the same logic as the proof of Proposition

1, with γ > 0, r = ρ.

B Frustration accumulation with exogenous increments

This section explores the implication of frustration accumulation when frustration increases

by an exogenous amount a > 0 when the decision maker fails. As such,the maximisation

problem is identical to the main formulation (G.O) presented in section 3 in the main text

with an adapted law of motion:
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ḟt = a− δft. (B.1)

With a > 0. The main difference is that the frustration cost of failing is independent

of the investment level. The Hamiltonian of the maximisation problem is:

H̃(xt, ft, λ̃t, µ̃t) = e−ΦtU(xt, ft)− λ̃t(a− δft)− µ̃t(γ · xt + r)

Using the same change of variable and reasoning as in section A.1, with µ̃t = e−Φtµt

and λ̃t = e−Φtλt, I get that the same first order conditions (A.2)-(A.4) and (A.1) becomes

Ux(xt, ft) = γµt. Differentiating the latter, I get that:

ẋt =
1

Uxx(xt, ft)
(γµ̇t − Uxf (xt, ft))

⇐⇒ ẋt =
1

Uxx(xt, ft)

(
γ (−U(xt, ft) + (γ · xt + r)µt)− Uxf (xt, ft)ḟt

)
⇐⇒ ẋt =

1

Uxx(xt, ft)

(
γ

(
−U(xt, ft) + (γ · xt + r)

Ux(xt, ft)

γ

)
− Uxf (xt, ft)ḟt

)
(B.2)

The Euler equation (B.2), together with the frustration law of motion (B.1) form the

canonical system of the inter-temporal maximisation problem. Next, let me linearise the

system around the steady state to study its dynamics. These are given by(
˙̂xt
˙̂
ft

)
= J∗

(
x̂t

f̂t

)
Where the variables denoted by hats are the rescaled investment and frustration, such

that steady state value are normalized to 0. J∗ is the Jacobian of the canonical system

evaluated at the steady-state (x∗, f ∗):

J∗ =

(
∂ẋ(x,f)

∂x
∂ẋ(x,f)

∂f
∂ḟ(x,f)

∂x
∂ḟ(x,f)

∂f

)∣∣∣∣∣
(x,f)=(x∗,f∗)

=

(
γx+ r Ω∗

f

0 −δ

)
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Where

Ω∗
f =

1

U∗
xx

(
(r + γx+ δ)Uxf −

γU∗
f

r + γx+ δ

)
The effect of an increase in frustration on the investment level (around the steady state)

has a very familiar form. In particular, it is influenced by the two same behavioural forces

as in the general case, the prospective emotional relief effect and the appraisal tendency

effect. On the other hand, the emotional cost is absent. This means that when frustration

increases in discrete and exogenous steps when the decision maker fails, she will not try to

reduce her investment level to protect herself from future frustration costs. The intuition

behind this result is simple. Whether she invested a lot or a little doing the last failed

attempt will not affect her frustration cost after that. As such, her investment level is

independent of the frustration marginal cost level given by the local curvature of Uff .

C Rational Addiction without habit formation

In this section, I focus on the possible addictive tendencies frustration can create with

regard to investment. Addiction and emotions have a strong link, which has been studied

qualitatively in economics (Loewenstein, 1999; Elster, 1999). This is the first contribution

to formally establishing this link. It would be straightforward to show that one can get a

rational addiction model with positive appraisal tendencies as the mechanics are the same

as the one studied in the original formulation (Becker and Murphy, 1988). As such, I focus

on cases with no appraisal tendencies, with uxf = 0 and where investment increases the

probability of success, as in section 3.2. In this case, the dynamics of the model will stem

from a mechanism that is absent in rational addiction models: the prospective emotional

relief effect. I can write the inter-temporal decision problem as:

V = max
xt∈[0,I]

∫ ∞

0

e−ϕ(xt,t)U(xt, ft)dt (G.O)

ḟt = xt − δft

f0 given

Where ϕ(xt, t) =
∫ t

0
γ ·xsds+ρt is the effective discount rate and ρ > 0 is the subjective

discount rate. We want the maximisation problem to be concave in x for any value of f .

Endogenously discounted inter-temporal maximisation problems are solvable but become

complicated very quickly. As such, I will focus on a relatively simple functional form.
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U(xt, ft) = −W − β
f 2
t

2
− c

2
x2t (C.1)

Equation (C.1) describes the preferences of an agent suffering a utility loss −W ,W > 0,

that she could eliminate by achieving success. As such, the agent is willing to invest in

increasing the odds of eliminating this utility cost. On the other hand, the investment and

frustration costs remain the same as in the main text. The next lemma shows that our

maximisation problem is well-defined as long as W ≥ c
γ2 .

Lemma C.1. The integrand in (G.O) is concave in x and f (separately) if W ≥ c
γ2 .

In what follows I assume that W ≥ c
γ2 . Let me introduce a new state variable Φt =∫ t

0
γ · xsds+ ρt and rewrite the maximisation problem as:

V = max
xt∈[0,I]

∫ ∞

0

e−ΦtU(xt, ft)dt

ḟt = xt − δft

Φ̇t = γxt + ρ

f0 given

The current value Hamiltonian of the maximisation problem is:

H(t, ft, xt, λ̃t, µ̃t) = e−Φt

(
−W − α

f 2
t

2
− c

2
x2t

)
− λ̃t(xt − δft)− µ̃t(γxt + ρ)

Moreover, the Lagrangian is:

L(t, ft, xt, λt, ψt) = H(t, ft, xt, λt) + ψ1
t (I − x)− ψ2

t xt.

Where ψ1
t and ψ2

t are the Lagrangian multiplier associated with the Kuhn and Tucker

conditions for optimality. The first-order conditions for a point interior to the domain are:
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Hx = 0

˙̃λt = Hf

˙̃µt = HΦ

limt→∞ H̃(·) = 0

⇐⇒



−e−Φt · c · xt = λ̃t + γµ̃t

˙̃λt = −e−Φtβft − δλ̃t

˙̃µt = −e−Φt

(
−W − β

f2
t

2
− c

2
x2t

)
limt→∞ H̃(·) = 0

(FOC)

Using the same reasoning as in section A.1, we can rewrite our system as:

−c · xt − γµt = λt

λ̇t = −βft + (ρ+ γ · x+ δ)λt

µ̇t = −W − β
f2
t

2
− c

2
x2t + (ρ+ γ · x)µt

µt =
−W − β

f2
t

2
− c

2
x2t − λt(xt − δft)

γ · xt + ρ

(FOC2)

Solving for µt and λt using the first and last equations of (FOC2):
λt =

γ(W + β
f2
t

2
+ c

2
x2t )− c · xt(γxt + ρ)

ρ+ γδft

µt =
−W − β

f2
t

2
− c

2
x2t + c · xt(xt − δf)

(ρ+ γδft)

(CS)

Using the expressions for the co-states (CS), I can rewrite the co-states law of motions

as: 
λ̇t = −βft + (ρ+ γ · xt + δ)

γ(W + β
f2
t

2
+ c

2
x2t )− c · x(γx+ ρ)

ρ+ γδf

µ̇t = −
γ(W + β

f2
t

2
+ c

2
x2t )− c · xt(γxt + ρ)

ρ+ γδft
· (x− δft) = −λḟt

(CSLM)

Differentiating the first equation in (FOC2), I get the canonical system of our inter-

temporal decision-making problem:

ẋt = −1

c

(
−βft + (ρ+ δ + γ · xt − γḟt)λt

)
(EE)

ḟt = xt − δft (F)

Where λt is defined in CS. To find the steady state of this system, we must equalise (EE)

and (F) to 0 simultaneously. To get a somewhat simpler expression, I assume that ρ = δ1.

1The assumption is not needed but simplifies equation (C.2) by having an unambiguously negative

11



I get that ft =
xt

δ
. On the other hand, the Euler equation becomes:

γ2

2

(
β

δ2
− c

)
x3t +−2γδcx2t +

(
γ2W − β − 2δ2c

)
x+ 2δγ ·W = 0 (C.2)

It is possible to characterise the exact solutions of the system, but they are of little

analytic value, given the complexity of their expressions. It is, however, possible to have a

good intuition of when and why multiple equilibria might occur. Observe that the constant

of the polynomial is positive; as such, to have two positive steady states, the coefficient of

the cubic term must be positive, with β
δ2
> c. On the other hand, if β

δ
< c, the steady-

state will always be stable and unique. As such, the frustration sensitivity parameter β

will naturally drive the addictive tendencies and the system’s instability. The higher the

frustration, the higher the incentive to eliminate its cost. The following proposition gives

the conditions for a steady state to be stable. In particular, it shows that in the case β
δ2
> c,

a steady state characterised by an investment level that is above a certain threshold will

be unstable.

Proposition C.1. Let β
δ2
> c, if they exist, the interior steady-state(s) (x∗, f ∗) of the

system will be stable if and only if x∗ < x̂, for some x̂ > 0 If β
δ2

≤ c, the steady-sate

(x∗, f ∗) is always stable.

Figure C.0.1 describes two possible cases. The left-hand side of the panel is the typical

rational addiction case, with multiple steady states or unstable steady states. The top

left panel describes a situation where the low steady-state has an x value below x̂ and is

stable. The second steady-state is unstable on the right of x̂. The right panels show that

it is also possible to have a well-behaved maximisation problem where the decision-maker

has a single (and stable) steady state.

C.1 Lemma C.1

We need to check under which condition the second order derivative, with regards to xt,

of e−ϕ(xt,t)
(
−W − β

f2
t

2
− c

2
x2t

)
is negative.

coefficient for the quadratic coefficient.
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Figure C.0.1: Investment dynamics simulations

The upper panels graph (EE) and (F).The light grey line represents (F), and the dark line
represents (EE). The dotted line always represents the x̂ value. The bottom panels graph
the left-hand side of equation(C.2). The left panels present the investment dynamics for
an individual with γ = 0.1, β = 1, δ = 0.05, W = 10 and c = 1. The right panels represent
a decision-maker with γ = 0.1, β = 0.1, δ = 0.2, W = 10 and c = 10.
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∂e−ϕ(xt,t)U(x, f)

∂x
= e−ϕ(xt,t)

(
−c · xt − γ

(
−W − β

f 2
t

2
− c

2
x2t

))
∂2e−ϕ(xt,t)U(x, f)

∂x2
(x, f) = e−ϕ(xt,t)

(
2γc · xt − c+ γ2

(
−W − β

f 2
t

2
− c

2
x2t

))
(C.3)

Clearly, (C.3) is more likely to become positive if f = 0. Let me check if (C.3) is

indeed negative even when it maximised. To do this I only need to look at the sign of

the expression multiplying e−ϕ(xt,t). Define G(x) = 2γc · xt − c + γ2
(
−W − β

f2
t

2
− c

2
x2t

)
.

Clearly it is a concave function and G(0) < 0. Now let me maximise G(x), the first order

conditions gives x = 2
γ
. As such, G( 1

γ
) = c− γ2 ·W . As such, the e−ϕ(x,t)U(x, f) is always

concave in x. On the other hand, e−ϕ(x,t)U(x, f) is clearly concave in f .

C.2 Proposition C.1

We must compute the Jacobian matrix values at the possible steady states. Let J∗ be this

Jacobian of the canonical system evaluated at the steady-state (x∗, f ∗):

J∗ =

(
∂ẋ(x,f)

∂x
∂ẋ(x,f)

∂f
∂ḟ(x,f)

∂x
∂ḟ(x,f)

∂f

)∣∣∣∣∣
(x,f)=(x∗,f∗)

I have that:

∂ẋt
∂xt

= −1

c

(
(γx∗t + 2δ)

γcx∗t − γcx∗t − c(γx∗t + δ)

γx∗t + δ

)
= (γx∗t + 2δ)

∂ẋt
∂ft

= −1

c

(
−β + γδλ∗t + (γx∗t + 2δ)

(
γβf ∗

t

γx∗t + δ
− γδ

γx∗t + δ
λ∗t

))
= −β

c

(
γx∗t (γx

∗
t + 3δ)

δ(γx∗t + 2δ)
− 1

)
As such,

J∗ =

(
(γx∗t + 2δ) −β

c

(
γx∗

t (γx
∗
t+3δ)

δ(γx∗
t+2δ)

− 1
)

1 −δ

)
I can determine the stability of the steady state by looking at the value of the eigenvalues

of J∗. These are given by:
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ν1,2 =
tr(J∗)±

√
tr(J∗)2 − 4∇(J∗)

2

=

(γ · x∗ + δ)±
√

(γ · x∗ + δ)2 + 4(γx∗ + 2δ)δ − 4β
c

(
γx∗

t (γx
∗
t+3δ)

δ(γx∗
t+2δ)

− 1
)

2
.

Where∇(J∗) is the determinant of the Jacobian matrix J evaluated at the steady-state.

The largest eigenvalue will always be positive. The smallest eigenvalue will also be positive

if ∇(J∗) ≥ 0. Let me first focus on the case where β > δ2c. Developing the inequality

yields the following system:

x2 +
2δ

γ

β − 2δ2c

β − δ2c
x− 2

δ2

γ2
β + 2δ2c

β − δ2c
≥ 0. (C.4)

Where the constant of the polynomial is negative and the coefficient associate to the

highest coefficient is positive. As such, the polynomial will have a unique positive solution

x̂, above which the determinant is positive and where the system will be unstable. On the

other hand, if β > δ2c, the inequality in (C.4) switches. In that case, it is easy to see that

the constant and the coefficients for the linear and quadratic term are positive. Given that

the expression must be lower than 0, it is never satisfied, and the system is always stable.

D Non-monotonic reactions to frustrating events

In real-life scenarios, several inter-temporal dynamics, such as Bayesian updating or learning-

by-doing often accompany successive failures. As such, if one wants to look at the effect

of frustration accumulation on personal motivation, one might look at a mix of different

dynamics. This section studies the interaction one can get when several dynamics are

present. In particular, I study the combined effect of learning-by-doing and frustration

accumulation on investment and characterise when non-monotonicities of the optimal path

can arise.

With that in mind, let me introduce a learning-by-doing mechanism in our system. Let

wt represent the stock of experience accumulated at time t. I assume that wt follows a

logistic growth: ẇt = wt(a − bwt) where a > b > 0. The experience growth rate is slow

when the decision-maker discovers the task, then increases when she tries to solve it and

finally decreases as she perfects her solving mechanism. I suppose that the discount rate
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of frustration δ is not too large relative to the effect of a trial on experience δ < a. Notice

that experience only depends on time and not the agent’s investment.2 The expected

instantaneous utility of the agent is:

U(xt, ft, wt) = πu(xt, ft)− v(ft)− c(wt, xt)

Learning by doing reduces the marginal cost of investment: cxw(x,w) < 0 and has

decreasing returns cww > 0, or alternatively Uww(x, f, w) < 0. Finally, I focus on the case

with negative appraisal effects Uxf ≤ 0, which is the most interesting case.3

The inter-temporal optimisation problem is

V (t0, ft0 , wt0) = max
xt

∫ ∞

0

e−(ρ+π)tU(xt, ft, wt)dt

ḟt = xt − δft

ẇt = wt(a− bwt)

ft0 , wt0 given

I apply the same regularity conditions as before.4 Let X(t) be the optimal investment

path functional solving this maximisation problem. The law of motion of experience is not

affected by frustration and investment; it evolves independently.

The system optimisation follows the same lines as before. I can similarly characterise the

canonical system and linearise it around the steady-state. This yields the following three-

dimensional system. As before, one law of motion describes the evolution of the optimal

investment, and the two other reiterates the law of motions of the two-state variables,

frustration f̂t and experience ŵt.

˙̂xt = (ρ+ π + δ)x̂t + Ω∗
Af̂ + Ω∗

wŵt (D.1a)

˙̂
ft = x̂t − δf̂t (D.1b)

˙̂wt = −aŵt (D.1c)

2It is possible to develop the model with a learning-by-doing process that depends on investment.
However, this involves solving a 3rd degree polynomial to get the eigenvalues of the Jacobian, which
greatly complicates any further analysis.

3Or at least, a case where non-monotonicities arise
4That is, the Inada conditions and concavity of the Hamiltonian.

16



Where Ω∗
A is define as in (6), Ω∗

w = (ρ+π+δ+a)U∗
xw

U∗
xx

< 0 characterise the temporal comple-

mentarity between x̂t and ŵt in the same way Ω∗
A does for x̂t and f̂t. The main difference

with the system developed in section 3.1, besides the new learning-by-doing law of motion

(D.1c), resides in this added term to the investment Euler equation (D.1a). Since Ω∗
w < 0,

any additional experience below the steady-state level ŵt < 0, increases the investment

level. For example, a ŵt of one unit below the steady-state, increases the investment level

by Ω∗
w

In order to get a picture of how the dynamics play out, let me study the system using

the phase diagrams in Figure D.0.1. We are looking for conditions characterising non-

monotonicities of the optimal investment path, that is, the cases where X ′(t) changes sign.

The learning-by-doing effect is represented by a shift of the ˙̂xt(w) = 0 locus to the right,

indicated by the thick dashed arrow on the graph, from ˙̂xt(wt0) = 0, to ˙̂xt(w
∗) = 0, its

steady-state position.

Let me define the two zones, I (Increasing investment) and D (Decreasing investment)

in Figure D.0.1. Zone D is the area above the
˙̂
ft = 0 and below the ˙̂xt(wt) = 0 loci, where

investment decreases and frustration increases. Zone I is the area above the
˙̂
ft = 0 locus

and between ˙̂xt(wt) = 0’s current position and its steady state position. Both investment

and frustration increase in zone I. Notice that zone I is gradually replaced by zone D

because the investment locus shifts to the right to its steady state position. So a point

that is initially in zone I would end up in Zone D when the ˙̂xt(wt0) = 0 locus reaches its

steady state position. This means that the sign of dynamics characterising the evolution

of xt might change when experience increases. Alternatively, their dynamic would change

if the optimal investment at time t goes from one zone to another at t′ > t.

Of course, such two-dimensional phase diagram analysis only partially shows how the

system evolves because it cannot represent the dynamics’ temporal speed. For example,

suppose the initial values of the system are in zone I. In that case, will the optimal invest-

ment increase until it reaches the steady-state as in Casee 1 depicted in FigureD.0.1? Or

will it first increase and then decrease, as depicted in Case 1 of figure D.0.1. Understand-

ing the behaviour of the optimal path X(t) through time ultimately boils down to figuring

out f̂t and ŵt’s relative convergence speed and their relative effect on x̂t. Overall, all the

different temporal behaviours of the system can be predicted by looking at whether the

initial experience-frustration ratio f̂0
ŵ0

is above or below a certain threshold Θ.5 I focus on

the “hump-shaped” investment path thereafter.

5See appendix for the definition of Θ.
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Case 1

I

D

x̂t

f̂t

˙̂xt(wt0
) = 0

˙̂xt(w
∗) = 0

˙̂
ft = 0

x̂0

f̂0

0

0

Case 2

I

D

x̂t

f̂t

˙̂xt(wt0
) = 0

˙̂xt(w
∗) = 0

˙̂
ft = 0

x̂0

f̂0

0

0

Case 3

I

D

x̂t

f̂t

˙̂xt(wt0
) = 0

˙̂xt(w
∗) = 0

˙̂
ft = 0

x̂0

f̂0

0

0

Case 4

I

D

x̂t

f̂t

˙̂xt(wt0
) = 0

˙̂xt(w
∗) = 0

˙̂
ft = 0

x̂0

f̂0

0

0

Figure D.0.1: Examples of non-monotonic optimal investment paths in frustration-
investment phase diagrams.
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Let the frustration-experience ratio be low, with f̂0
ŵ0

≥ Θ. This can be interpreted as

experience being “far enough” from its steady-state value, relative to frustration, given

both state variables’ effect and convergence speed. For these starting values, (x̂0, f̂0) will

be in zone I, with x̂0 ∈ X(0). Since the point is above the ˙̂xt(wt0) = 0 and
˙̂
ft = 0 loci,

frustration and investment increase. But, remember that zone I is gradually replaced by

zone D. As such, there are two possibilities:

(1) If Ω∗
A is low6, Ω∗

A < −δ(ρ+π+δ)−a(ρ+π+a), learning-by-doing’s effect dominates

all the way and frustration’s negative effect is never revealed through the dynamics. In

that case, the optimal investment X(t) stays in zone I as in Case 4 in Figure D.0.1.

(2) If Ω∗
A is large, Ω∗

A > −δ(ρ+ π + δ)− a(ρ+ π + a), frustration’s effect dominates in

the long run but not in the short run, and the optimal investment path is hump-shaped.

Intuitively, the task is relatively easy to grapple with, and there is a lot to learn: the

learning process is rapid and decreases the marginal cost relatively quickly and significantly.

However, once most of the learning occurred, the negative effect of frustration catches up,

and investment decreases to its steady-state value. Graphically, the optimal investment

level was in zone I before a specific t′ > 0 and is in zone D afterwards, yielding a humped-

shaped optimal investment path X(t), I as in Case 2 in Figure D.0.1.

A final and perhaps more surprising case happens when the effect of frustration on in-

vestment is moderate Ω∗
A < −δ(ρ+π+ δ)−a(ρ+π+a), but the initial value of frustration

is far from its steady-state value relative to ŵ0. Investment first decreases quickly because

of the emotional cost but is caught up by the learning mechanism. In this case, the optimal

investment path is U-shaped. At first, the agent lowers her investment level because of the

overwhelming frustration effect and the slow learning-by-doing mechanism. However, with

time, the accumulation of experience becomes dominant relative to frustration, and invest-

ment provision increases to its steady-state level. The following proposition summarises

the different cases.

Proposition D.1. Let ft0 and wt0 be below their steady-state values, then:

• if Ω∗
A > −δ(ρ+ π + δ)− a(ρ+ π + a), and f̂0

ŵ0
≥ Θ the optimal investment path X(t)

is monotone decreasing in time,

• if Ω∗
A > −δ(ρ+ π + δ)− a(ρ+ π + a), and f̂0

ŵ0
< Θ the optimal investment path X(t)

is first increasing and then decreasing in time,

6Remember that Ω∗
A > 0 with negative appraisal tendencies.
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• if Ω∗
A < −δ(ρ+ π + δ)− a(ρ+ π + a), and f̂0

ŵ0
< Θ the optimal investment path X(t)

is monotone increasing in time,

• if Ω∗
A < −δ(ρ+ π + δ)− a(ρ+ π + a), and f̂0

ŵ0
≥ Θ the optimal investment path X(t)

is first decreasing and then increasing in time.

D.1 Proof of Proposition D.1

Let r = ρ+ π. The current value Hamiltonian of this problem is:

H(xt, ft, wt, λt, ) = U(xt, ft, wt)− λt(xt − δft)

Note that I do not include the Lagrangian associated with the learning-by-doing law of

motion as its Langrangian multiplier does not impact the control variable and state vari-

ables’ differential equation. This simplifies the exposition of the result. Solving the max-

imisation problem on the state-costate space with four differential equations (two states,

two costates) naturally yields the same result. The first-order conditions of the system are{
Ux(xt, ft, wt) = λt

λ̇t = Uf (xt, ft, wt) + (r + δ)λt
(D.2)

Differentiating the first equation of (D.2) with regards to time and inserting the law of

motion of the costate yields the canonical system:
ẋt =

1

Uxx(xt, ft, wt)

(
(λ̇t − ẇt · Uxw(xt, ft, wt)− ḟt · Uxf (xt, ft, wt)

)
ḟt = x∗t − δft

ẇt = wt(a− bwt)
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The Jacobian of the system at the steady-state is:

J(x∗, f ∗, w∗) =


∂ẋ(x,f,w)

∂x
∂ẋ(x,f,w)

∂f
(∂ẋ(x,f,w)

∂w
∂ḟ(x,f,w)

∂x
∂ḟ(x,f,w)

∂f
∂ḟ(x,f,w)

∂w
∂ẇ(x,f,w)

∂x
∂ẇ(x,f,w)

∂f
∂ẇ(x,f,w)

∂w


∣∣∣∣∣∣∣∣
(x,f,w)=(x∗,f∗,w∗)

=

r + δ Ω∗
f (r + δ + a)U

∗
xw

U∗
xx

1 −δ 0

0 0 −a

 .

The eigenvalues of this system are µ1 and µ2, defined as in Section A.2.1 and µ3 = −a.
Let me define wlog that µ1 < µ2.

I can now compute the eigenvector u1 = (u11, u
2
1, u

3
1)

′ and u3 = (u13, u
2
3, u

3
3)

′ associated to

the negative eigenvalues µ1 and µ3. These are found by solving the system (J∗−µi×I)∗ui =
0, where I is the 3 by 3 identity matrix, i = 1, 3:

(r + δ − µi)u
1
i + Ω∗

fu
2
i + (r + δ + a)U

∗
xw

U∗
xx
u3i = 0

u1i + (−δ − µi)u
2
i = 0

(−a− µi)u
3
i = 0

(D.3)

For µ1, given the third row of the system, u31 = 0 since µ1 ̸= −a. Using the second row,

it is easy to find that u21 =
µ1
1

δ+µ1
. As such, (u11, u

2
1, u

3
1) = (1, 1

δ+µ1
, 0) is one of the solutions

of the system.

Next, for µ3, normalise u13 to 1 and use the second row of the system to get u23 =
1

δ+µ3
.
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As for u33, I can plug the previous result into the first row to get:

−u33(r + δ − µ3)
U∗
xw

U∗
xx

=

(
(r + δ − µ3) +

Ω∗
f

δ + µ3

)
u13

=

(
(r + δ − µ3)(δ + µ3) + Ω∗

f

δ + µ3

)
=

1

δ + µ3

(
Ω∗

f + δ(r + δ) + µ3(r − µ3)
)

=
1

δ + µ3

(
1

4

(
r2 − r2 + 4(Ω∗

f + δ(r + δ))
)
+ µ3(r − µ3)

)
=

1

δ + µ3

(
1

4

((√
r2 + 4(Ω∗

f + δ(r + δ))
)2

− r2
)
+ µ3(r − µ3)

)

=
1

δ + µ3

−µ1

r − r +
r +

√
r2 + 4(Ω∗

f + δ(r + δ))

2

+ µ3(r − µ3)


=

1

δ + µ3

(µ3(r − µ3)− µ1 (r − µ1))

=
1

δ + µ3

(µ3 − µ1)(r − µ3 − µ1)

⇐⇒ u33 =
U∗
xx

U∗
xw

(µ1 − µ3)(r − µ3 − µ1)

(r + δ − µ3)(δ + µ3)

Given the eigenvalues and associated eigenvectors, I can express the solution of our

system as: 
x̂t = k1e

µ1t + k3e
µ3t

f̂t = k1u
2
1e

µ1t + k3u
2
3e

µ3t

ŵt = k3u
3
3e

µ3t

(D.4)

Where the initial values of the system determine k1 and k3. For what follows, it is

important to note that I have δ + µ3 < 0 by assumption and since and δ + µ1 < 0 since

Ω∗
A > 0 7, as we are considering negative appraisal tendencies. Next, notice that:

f̂0 < 0 ⇐⇒ k1 > −k3
µ1 + δ

µ3 + δ
(D.5)

The following result gives conditions for system (D.4)’s investment path x̂t to be non-

monotonic in time:

7As shown Appendix A.2.1
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Lemma D.1. A system defined as in (D.4) with two negative eigenvalues µ1 and µ3,

exhibits a non-monotonic optimal investment path x̂t with regards to time if and only if k1

and k3 have opposite signs and either −k1
k3

µ1

µ3
< 1 and µ3 < µ1 or −k1

k3

µ1

µ3
> 1 and µ3 > µ1.

Moreover, ˙̂xt only changes sign once.

Proof. A necessary condition for the optimal investment path to be non-monotonic is that

at some t′, ˙̂xt′ = k1µ1e
µ1t + k3µ3e

µ3t = 0. This happens if and only if there is a positive t′

solving:

ln

(
−k1
k3

µ1

µ3

)
1

µ3 − µ1

= t′

Since µ1 and µ3 are negative, this equation is well defined if k1 and k3 have opposite

signs. Moreover, t′ will be positive if either −k1
k3

µ1

µ3
< 1 and µ3 < µ1 or −k1

k3

µ1

µ3
> 1 and

µ3 > µ1. Notice that there is only one t′ satisfying this equation. As such, if t′ characterises

an extremum, it is unique.

For sufficiency, I need to verify that t′ is an extremum, not an inflexion point. This can

be easily checked by looking at the sign of the second derivative of x̂t

¨̂xt = µ2
1k1e

µ1t + µ2
3k3e

µ1t

x̂t will change its curvature at the possible inflexion point t′′ if ¨̂xt′′ = 0. If t′′ exists, it

is defined by:

t′′ = ln

(
−2

k1
k3

µ1

µ3

)
1

µ3 − µ1

> t′

As such, t′ is not an inflexion point.

Let me now prove the result of the proposition. First, as shown before, I have that:

u33 =
U∗
xx

U∗
xw

·
−Ω∗

f − δ(r + δ)− a(r + a)

(δ + µ3)(r + δ − µ3)
(D.6)

=
U∗
xx

U∗
xw

· (µ1 − µ3)(r − µ1 − µ3)

(δ + µ3)(r + δ − µ3)
(D.7)

I can see by inspecting (D.6)-(D.7) that −Ω∗
f − δ(r + δ) − a(r + a) has the same sign

as (µ1 − µ3). Next, let me define the threshold of Θ of the proposition as:
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Θ =
U∗
xw

U∗
xx

· (δ + µ1 + µ3)(r + δ − µ3)

µ1(δ + µ1)(r − µ1 − µ3)
> 0 (D.8)

I can, therefore express u33 in the following way:

u33 =
1

Θ

(µ1 − µ3)(δ + µ1 + µ3)

µ1(δ + µ1)(δ + µ3)

It is possible to determine the expression of k1 and k3 by setting t = 0:

k3 =
wt0

u33
=

µ1(δ + µ1)(δ + µ3)

(µ1 − µ3)(δ + µ1 + µ3)
Θwt0 (D.9)

k1 =
1

u21

(
ft0 − u23 · k3

)
= (δ + µ1)

(
ft0 −

µ1(δ + µ1)

(µ1 − µ3)(δ + µ1 + µ3)
Θwt0

)
(D.10)

Next, notice that if ft0 ≥ Θwt0 , (and similarly for ft0 < Θwt0):

ft0 ≥ Θwt0

⇐⇒ ft0 ≥
(µ1 − µ3)(δ + µ1 + µ3)

(µ1 − µ3)(δ + µ1 + µ3)
Θwt0

⇐⇒ (δ + µ1)

(
ft0 −

µ1(δ + µ1)

(µ1 − µ3)(δ + µ1 + µ3)
Θwt0

)
≤ − µ3(δ + µ1)(δ + µ3)

(µ1 − µ3)(δ + µ1 + µ3)
Θwt0

⇐⇒ k1 ≤ −k3
µ3

µ1

The inequality switches on the third line because δ + µ1 < 0 and where k1 and k2 are

inserted in the expression using equations (D.10) and (D.9). As such:

ft0
wt0

≤ (>)Θ ⇐⇒ k1 ≤ (>)− k3
µ3

µ1

(D.11)

I can now use the equivalence relation (D.11) and Lemma D.1 to determine when non-

monotonicities arise.

• If Ω∗
f > −δ(r + δ) − a(r + a), by expression (D.6)-(D.7), I have that µ3 > µ1 and

u33 < 0. Since wt0 < 0, it must be that k3 > 0 because wt0 = k3u
3
3. Now given that

ft0 < 0, there are two cases:

1. f̂0
ŵ0

< Θ from expressions (D.11) and (D.5), k1 is in
(
−k3 µ1+δ

µ3+δ
,−k3 µ3

µ1

)
, and
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k1 < 0. Then −k1
k3

µ1

µ3
> 1. By Lemma D.1, the optimal path is non-monotonic.

I have that:
˙̂x0 = µ1k1 + µ3k3 > −k3

µ3

µ1

µ1 + µ3k3 = 0

Also, by Lemma D.1, ˙̂xt only changes sign once. As such, the optimal investment

path is first increasing and then decreasing.

2. f̂0
ŵ0

≥ Θ, from expression (D.11), k1 ≥ −k3 µ3

µ1
,then −k1

k3

µ1

µ3
≤ 1 .By Lemma 2,

the optimal path is monotone Since ẋ0 = k1µ1 + k3µ3 ≤ 0, the optimal path is

monotone decreasing.

• If Ω∗
f < −δ(r − δ) − a(r + a) then, µ1 > µ3, u

3
3 > 0 and k3 < 0. I then have two

possibilities:

1. f̂0
ŵ0

≤ Θ, as such, k1 ∈
(
−k3 µ1+δ

µ3+δ
,−k3 µ3

µ1

]
, then −k1

k3

µ1

µ3
≤ 1. By Lemma D.1, the

optimal path is monotonic. Since ẋ0 ≥ 0. It is first monotone increasing.

2. f̂0
ŵ0

> Θ , as such, k1 > −k3 µ3

µ1
then ẋ0 < 0 and −k1

k3

µ1

µ3
< 1 and µ1 > µ3, by

Lemma D.1, the optimal path is non-monotonic: it is first decreasing and then

increasing.
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E The psychology behind the model

This section links the modelling choices to the psychological literature for more specialised

readers.

It might be first important to repeat that frustration should not be understood as it

does in its ordinary meaning as a single discrete emotion. One can consider frustration

as some proto-emotion that stems from the primary appraisal of the frustrating events as

relevant and goal incongruent (Lazarus and Folkman, 1984).

Frustration should also not be considered as a mood. First, frustration stems from

frustrating events, which are a particular cause, while moods are less focused Keltner

and Lerner (2010). Second, frustration is context-bound and interacts with the decision

environment and the state of the world through the emotional relief effect in a way a mood

would not. Although emotions are thought to be short-lived, which is modelled through

the decay rate, the model also shows how an emotion can persist for a longer time if it

triggers an action whose consequences trigger the emotion itself.8

Even though the title of this article might indicate that I am following a valence ap-

proach to emotion, I am not. While it is true that the emotional cost function plays an

essential role in how emotions affect behaviour, it is only part of the picture. When looking

at the model’s solution and the impact of frustration on investment provision, it becomes

clear that the behavioural reaction to frustration - the action tendency - will depend on

much more than valence. In particular, many determinants of the optimal solution map

directly to dimensions identified in dimensional approaches to cognitive appraisal, espe-

cially Smith and Ellsworth (1985). These include certainty (the level of π̄(xt)), control

coping (through γ), pleasantness (the amount of frustration triggered by a failure and its

marginal cost ) and anticipated effort through the expectation of future effort cost and

frustration cost in case of continuing failure. In fact, following a dimensional approach to

emotions, Appendix D, shows that one can have a transition of action tendencies when the

appraisal of one dimension changes (a change in the anticipated effort cost through the

learning-by-doing process).

Finally, the model also adopts the Appraisal-Tendency framework (Lerner and Keltner,

2001), a cognitive appraisal model with a dimensional approach to appraisal. It should

be noted that while keeping the model general by not describing the context in which

8This mechanism is central in recent development in psychopathology (Robinaugh et al., 2020). It
might, therefore, not be surprising that one can transform the framework into a rational addiction model,
see Appendix C.
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frustration emerges, one also loses some precision about how appraisal tendencies work.

In particular, Appraisal Tendencies are related to the core appraisal theme of the emo-

tion triggered. Here, appraisal tendencies come into a more reduced form fashion as I do

not relate the appraisal of the environment to subsequent appraisal tendencies. In fact,

Appraisal tendencies could (and should) be endogenised when studying more specific situ-

ations. However, approaching the question in a more general reduced form fashion also has

its advantages. First, it gives a general benchmark of how appraisal tendencies, wherever

they come from, can influence behaviour. Second, it provides a theoretical benchmark one

can use to study appraisal tendencies when researchers have limited information about the

emotional process, as in Section 4.

F Empirical Appendix

F.1 Pitch Type analysis

Table F.1.1 presents the standard speed variation for all pitches representing at least one per

cent of the cleaned sample. The standard deviations are computed for each pitch type at the

player-game-inning level. Table F.1.1 presents these standard deviations’ averages over the

entire sample for each pitch type. The standard deviations are remarkably homogeneous

and vary from 0.91 to 1.08 mph.

Table F.1.1: Standard deviation of Speed of pitches

Pitch Name SD Speed Number of Obs

Sinker 0.91 1549913

Slider 1.08 1103659

4-Seam Fastball 0.92 2505992

Split-Finger 0.96 110276

Cutter 0.94 412864

Changeup 0.95 742088

Curveball 1.09 587691

Knuckle Curve 1.06 151197

The first column indicates the pitch type. I only keep pitches that represent more than 1% of the observation of the dataset.

The second column indicates the average standard deviation of the speed of a pitch type during a game × inning at the

player level. The third column indicates the number of throws for each pitch type in the cleaned dataset.
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Table F.1.2 presents the frustration coefficients for the most popular pitches when

running the OLS regression, controlling for all factors presented in Table 3. The effect

of frustration on speed is robust whether you look at the effect at the pitch type level or

the aggregate level. Frustration seems to affect some pitch types more than others, with a

higher effect on Fastballs and a lower effect on Split Fingers.

Table F.1.2: Effect of frustration per pitch type

Dependent Variable: ln Velocity
Model: (1) (2)

Variables
Fastball 0.0017∗∗∗ 0.0017∗∗∗

(5.8× 10−5) (4.1× 10−5)
Split Finger 0.0009∗∗ 0.0009∗∗∗

(0.0004) (0.0003)
Slider 0.0014∗∗∗ 0.0014∗∗∗

(0.0001) (8.59× 10−5)
Curveball 0.0012∗∗∗ 0.0012∗∗∗

(0.0002) (0.0001)
Cutter 0.0012∗∗∗ 0.0012∗∗∗

(0.0001) (0.0001)
Changeup 0.0008∗∗∗ 0.0008∗∗∗

(0.0001) (9.11× 10−5)
Knuckle Curve 0.0017∗∗∗ 0.0017∗∗∗

(0.0002) (0.0002)

The table’s first column indicates which pitch type the regression was performed. The columns indicated
by (1) and (2) display the OLS coefficient for frustration when the log of pitch speed is the dependent
variable, controlling for all fixed effects present in Table 3. Column (1) is clustered at the pitcher level,
and column (2) is clustered at the game level.

F.2 Frustration effect on pitch quality

The pitch quality measure is the result of an estimation predicting pitches’ success, given

the physical characteristics of the motion of the throw. I use the eXtreme Gradient Boost-

ing (XGBoost) algorithm (Chen and Guestrin, 2016) to do this. XGBoost is a gradient-

boosting model based on decision tree ensembles. The tree ensemble is a set of classification

trees where each leaf is assigned a prediction score. XGBoost then aggregates the predic-

tion of all the trees to get the final prediction. The main difference with random forest
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models, which are also based on tree ensembles, is how each tree is optimised.

New trees aim to minimise the residual errors in the predictions from the existing

sequence of trees. Each tree is sequentially (instead of simultaneously, as in Random

Forests algorithms) learned by optimising a binary logistic objective function. I use the

2020-2021 seasons as a training dataset. I set the number of trees to 100. I tuned the

algorithm’s hyper-parameters using a random grid search and a 5-fold cross-validation. I

focus on two hyperparameters. The first is the learning rate η ∈ (0, 1], which reduces the

weight of new features in the predictions to avoid over-fitting. The second controls the

L2 regularisation term. Table F.2.1 describes the features used in the machine learning

algorithm. I train a separate algorithm for each pitch for which I have more than 10,000

observations in the training dataset.

Table F.2.1: Features used in the estimation of the Success Probability

Features

Velocity of the pitch, in x, y and z-dimension, at y=50 feet.
The acceleration of the pitch in x, y and z-dimension, determined at y=50 feet.
Horizontal & vertical ball position when it crosses home plate (catcher’s perspective).
Horizontal & vertical movement in feet from the catcher’s perspective.
Out-of-hand pitch velocities.
Horizontal & vertical Release Position of the ball measured in feet(catcher’s perspective).
Release position of pitch measured in feet (catcher’s perspective).
Acceleration of the pitch, in feet per second per second, in x, y and z-dimension.
Top & bottom of the batter’s strike zone when the ball is halfway to the plate.

Table F.2.2 show the result of the machine learning algorithm when applied to the main

dataset (2010-2019). I measure the accuracy as the proportion of observation in the dataset

for which the algorithm predicts a probability of more than 0.5 for the event that actually

happened (Success or Failure). The first column shows that the algorithm’s accuracy is

between 0.81 and 0.75, depending on the pitch type. The next two columns indicate the

average probability predicted given the (ex-post) outcome. This shows that the algorithm

does a good job of differentiating the outcome.
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Table F.2.2: Predictive Statistics of the Machine learning algorithm

Pitch Name Accuracy Mean Pred.prob(S|S) Mean Pred.prob(F|F)
Sinker 0.79 0.75 0.31

Slider 0.76 0.70 0.29

4-Seam Fastball 0.81 0.76 0.27

Split-Finger 0.75 0.68 0.31

Cutter 0.78 0.72 0.30

Changeup 0.76 0.70 0.29

Curveball 0.77 0.72 0.29

Knuckle Curve 0.77 0.69 0.29

The first column indicates the pitch type for which the algorithm ran. The second indicates the proportion

of observations for which the predicted probability tilted towards the right pitch outcome. That is the

proportion of observation for which the pitches ended up in a failure ( or success) and where the predicted

probability of success was greater (or lower) than 0.5. The third and fourth columns indicate the average

predicted probability of success given the outcome of the pitch ((S)uccess or (F)ailure).

To assess the impact of frustration on quality, I run an OLS regression with the standard

control strategy that was carried on in the rest of the paper, using the quality variable

derived from the XGBoost estimation as the dependent variable. Table F.2.3 shows that

one unit of frustration decreases the predictive probability of success by half a percentage

point. Although the effect is significant and economically meaningful, the control strategy

is less successful for these regressions. Indeed, the adjusted R2 is much lower and around

7.7%.
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Table F.2.3: Effect of Frustration on Quality

Dependent Variable: Quality

Model: (1) (2)

Variables

Ft -0.0048∗∗∗ -0.0048∗∗∗

(0.0007) (0.0007)

# Failures 0.0138∗∗∗ 0.0138∗∗∗

(0.0004) (0.0001)

# Successes -0.0091∗∗∗ -0.0091∗∗∗

(0.0003) (0.0001)

Attempt 0.0030∗∗∗ 0.0030∗∗∗

(0.0002) (5.19× 10−5)

∆ Exp. -0.0252∗∗∗ -0.0252∗∗∗

(0.0012) (0.0010)

∆ Score 0.0039∗∗∗ 0.0039∗∗∗

(0.0003) (0.0002)

∆ Inning Score 0.0032∗∗∗ 0.0032∗∗∗

(0.0011) (0.0010)

Fixed-effects

Ptype Yes Yes

Game State Yes Yes

Player × Game Yes Yes

Batter Yes Yes

Inning Yes Yes

Fit statistics

Observations 7,163,516 7,163,516

R2 0.07660 0.07660

Within R2 0.00438 0.00438

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Column (1) and (2) are clustered at the pitcher level and game level. Ft measures the change in the other

team’s expected score during the current and (possibly empty) sequence of consecutive failure. # Failures

and # Successes count the number of failures and success since the beginning of the inning. Attempt

measures the number of pitches the pitcher has thrown since the beginning of the inning. ∆ Exp measure

the change in the opposing team’s expected score since the beginning of the inning. ∆ Score measures

the current difference in score, while ∆ Inning Score measures the change in score since the beginning of

the inning. Ptypeindicates the pitch type. Game State indicates the number of batters out, the number of

balls, strikes and base occupancy. Player × Game indicates who is pitching during which game. Batter

indicates who is currently facing the pitcher.

31



F.3 Individual level Analysis

Let me introduce an individual-level analysis of pitchers’ reactions to frustration. I first

select all pitchers for which I have more than 2000 registered pitches, for a total of 859

pitchers9. My first exercise is to perform the same regression as in column 1 of table 3

for speed in the main text and F.2.3 in Appendix F.2 for quality. Figure F.3.1 show the

distribution of the coefficients. The frustration speed coefficient distribution clearly has

a left skew, with most of the mass being at the right of zero. The frustration quality

coefficient distribution only shows a very slight skew to the right.

Figure F.3.1: Distribution of the frustration coefficients.
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Table F.3.1 shows that more than one-third of the sample show a significant effect of

frustration accumulation on their behaviours regarding pitch velocity. Note that frustra-

tion accumulation at a high level remains rare. As such, estimating a significant impact

on a smaller sample size is much more challenging. The effects are also remarkably ho-

mogeneous. 98% of the significant frustration coefficients are positive. Regarding quality,

the results are more modest, and only 8.6% of the sample exhibit a significant effect of

frustration on the quality of the pitches. For the majority of pitchers, this effect is negative.

9This creates some selection bias because I am effectively selecting for the most competitive pitchers in
MLB. Table F.3.1 shows the results.
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Note that the 9% that have a significant effect of frustration on quality must have a p-value

below 5% percent. As such, we are above the threshold for false positives. Together with

the false negative in the sample, there must be a small minority of professional pitchers

whose frustration impacts quality.

Table F.3.1: Individual-level sensitivity to frustration

Pos. .Coeff. Neg. .Coef

Speed 0.38 0.01

Quality 0.02 0.07

The first row represents the proportion of pitchers displaying a significant effect (at at least 5% significance

level) of frustration on speed for positive and negative coefficients. The second row displays the same results

for the Quality regressions.

Table F.3.2 shows correlations for the individual-level coefficients. There is a significant

and negative correlation between the effect of frustration on speed and its impact on pitch

quality. A higher effect of frustration on speed is associated with a more negative impact

on quality. This rules out any rationale for saying that frustration motivates pitchers to

reach a better optimum. A possible rationale is the following. Frustration increases the

dis-alignment of emotional and performance incentives. For some players, this is limited

to a slight change in speed when frustrated. For others, the effect is such that it decreases

the quality of pitches. Overall, this goes towards the appraisal tendencies’ interpretation

of the results.

Next, I look at whether frustration sensitivity impacts performance at the career level.

To do this, I use the xFIP metric, which is short for Expected Fielding Independent

Pitching. xFIP measures the pitcher’s average performance for events where the pitcher

has the most control, such as strikeouts, home runs, walks, or hit by pitches10. For these

events, his teammate’s performance should play no role.

10It also corrects for the Home-run-to-fly-ball rate season’s league average.
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Table F.3.2: Frustration coefficient: correlations

Speed Quality

Speed

Quality -0.11***

xFIP -0.06* 0.11***

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1. Correlation table between the Speed and Quality Frustration

coefficient, and XFIP metric. xFIP is a measure that measures pitchers’ skills and focuses on the outcomes

over which the pitchers have the most control.

On its own, frustration’s impact on speed correlates very weakly with a general per-

formance decrease. However, frustration’s influence on behaviour can be high enough to

trigger negative consequences on pitch quality. In that case, frustration seems to be as-

sociated with a career-level decrease in the pitcher’s performance. Although modest, the

correlation is significant at a 1% significance level. The fact that the correlation is not

higher is not surprising. The frustration coefficient only tells how the quality evolves when

the pitcher is frustrated and says nothing about the pitcher’s performance when he is not

(80% of the throws according to figure 2).

F.4 Robustness check on restricted sample

For some observations, frustration will always be strictly greater than 0. In particular

any observation where the pitcher fails consecutively since the beginning of the inning will

always have a strictly positive value of frustration. One might argue that there is not

enough variation in those observations to differentiate the effect of frustration from the

effect of the strategic game state. To account for this, I carry out the same OLS regression

without all observations where the agent suffered an unbroken sequence of failed attempts

since the beginning of the inning. The deleted observations are all those where there are

no strikes and no outs, after the first throw. Table F.4.1 show the results:
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Table F.4.1: Effect of Frustration on Velocity with restricted sample

Dependent Variable: Velocity

Model: (1) (2)

Variables

Ft 0.1076∗∗∗ 0.1076∗∗∗

(0.0051) (0.0037)

# Failures 0.0186∗∗∗ 0.0186∗∗∗

(0.0013) (0.0008)

# Successes 0.0337∗∗∗ 0.0337∗∗∗

(0.0015) (0.0007)

Attempt -0.0143∗∗∗ -0.0143∗∗∗

(0.0012) (0.0004)

∆ Exp. 0.0237∗∗∗ 0.0237∗∗∗

(0.0071) (0.0063)

∆ Score 0.0015 0.0015

(0.0022) (0.0012)

∆ Inning Score -0.0839∗∗∗ -0.0839∗∗∗

(0.0076) (0.0060)

Fixed-effects

Ptype Yes Yes

Game State Yes Yes

Player × Game Yes Yes

Batter Yes Yes

Inning Yes Yes

Fit statistics

Observations 6,654,620 6,654,620

R2 0.91787 0.91787

Within R2 0.00226 0.00226

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Column (1) and (2) are clustered at the pitcher level and game level. Ft measures the change in the other

team’s expected score during the current and (possibly empty) sequence of consecutive failure. # Failures

and # Successes count the number of failures and success since the beginning of the inning. Attempt

measures the number of pitches the pitcher has thrown since the beginning of the inning. ∆ Exp measure

the change in the opposing team’s expected score since the beginning of the inning. ∆ Score measures

the current difference in score, while ∆ Inning Score measures the change in score since the beginning of

the inning. Ptype indicates the pitch type. Game State indicates the number of batters out, the number

of balls, strikes and base occupancy. Player × Game indicates who is pitching during which game. Batter

indicates who is currently facing the pitcher.

Table F.4.1 show that the result is robust to the sample manipulation and remains
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qualitatively similar.

F.5 Model adapted to the application

This section adapts the model’s stochastic structure to fit the illustration’s environment

and result. Given that speed does not affect the probability of success locally, let me

consider a fixed arrival rate of success π. There are two major differences with the main

specification of the model. (1) the amount of frustration gained from one period to another

only depends on the pitch outcome and how it affects score expectation. Since it does not

depend on the pitch velocity x, the frustration dynamics will be a frustration accumulation

process with exogenous increments as in section B. However, contrary to section B, the

amount of frustration gained after a failed attempt is also stochastic, and not simply a

deterministic increment a > 0. (2) There are also other stochastic components in the game

that might affect the decisions and the pitcher’s utility.

As such, to consider both (1) and (2) I need to consider a more general stochastic

structure. Let ωt ∈ Ω ⊂ R represent the relevant state space. Some dimensions of ωt will

pertain to the frustration level, others to the strategic state of the game. I assume that the

stochastic process {ωt, t ≥ 0} has the Markov property. As such, transition densities only

depend on the current state ωt. Note that the pitch velocity variation observed in the data is

unlikely to affect the (stochastic) transition from one state to another.11 This independence

is helpful, as it effectively transforms a very complicated dynamic maximisation problem

into a static one. To see this, one can set up the general Hamilton-Jacobi-Bellman equation

associated with the maximisation problem. I have that:

(ρ+ π)V (f, ω) = max
x

{U(x, f, s) + 1

dt
EwV (f, ω)} (F.1)

The expectation of the value function on the right-hand side does not depend on x,

and the first-order condition is:

∂µ(x, f)

∂x
= c′(x) (F.2)

As such, optimal speed does not depend on the value function, and the pitcher only

reacts to frustration, as it cannot influence its future value. Using the implicit function

theorem on the first-order conditions directly shows that the appraisal tendency would

drive the empirical results.

11Or, a least marginally enough not to be considered here.
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