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Abstract

This paper studies temporal factors influencing the effectiveness of don’t drive ap-

peals (DDAs) which policy-makers use to encourage motorists to voluntarily reduce

driving during transitory high pollution episodes. We derive and empirically validate

a theoretical framework for DDAs where the desired behavioral response is sensitive

to the number of consecutive DDA days and recovery time between episodes. Our

analysis of daily traffic flows from automatic traffic counters in Stuttgart, Germany

shows that DDAs at best reduce overall car trip demand during pollution events by

less than 1% on average, but treatment effects vary. Difference-in-difference event

study estimates reveal that DDAs: i) lead to approximately 3% traffic reductions on

the first three days of DDAs and taper off in effectiveness during longer episodes, ii)

regain effectiveness at the tail end of DDA episodes once local authorities announce

when they will be lifted, and iii) only reduce city center traffic following lengthy

recovery periods between events. Our findings provide evidence that temporal fac-

tors like social norms and intertemporal substitution dynamically affect voluntary

short-term pollution mitigation programs. They also confirm prior North Ameri-

can evidence on DDA traffic displacement and limited overall impact in a European

setting.
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1 Introduction

Policy-makers in urban areas commonly use air quality alerts (AQAs) to inform the pub-

lic of heightened ambient air pollution levels and to appeal for short-term adaptation

and mitigation. Individuals, particularly those from at-risk populations, try to reduce

pollution exposure during AQAs by rescheduling commutes (Saberian et al., 2017), ab-

staining from strenuous outdoor activity (Fan, 2024; Ward and Beatty, 2015), forgoing

leisure in outdoor recreational spaces (Janke, 2014; Graff Zivin and Neidell, 2009), and

investing in protective face masks (Liu et al., 2017), but responsiveness diminishes on

consecutive alert days (Graff Zivin and Neidell, 2009; Saberian et al., 2017).1 Previous

evidence on voluntary pollution mitigation during AQAs is less conclusive, and its tem-

poral dimension remains understudied. North American programs that combine AQAs

with don’t drive appeals (DDAs) find that DDAs are often ineffective in reducing car

use (Noonan, 2014; Sexton, 2012; Cummings and Walker, 2000), while Caplan (2023)

and Tribby et al. (2013) show they may even inadvertently increase driving. Cutter and

Neidell (2009) are the only ones to document an effective DDA. In this paper, we exam-

ine whether time-related DDA design choices, namely event duration and between-event

recovery time, affect whether commuters voluntarily drive less during DDAs by studying

a policy setting where they are implemented frequently and often for extended periods.

We begin by drawing from existing modal switching models (Cutter and Neidell,

2009; Sexton, 2012; Basso and Silva, 2014) to introduce a theoretical framework for DDAs

that predicts driving reductions and incorporates dynamic social norm effects. Despite

evidence of shortcomings in other contexts (Noonan, 2014; Sexton, 2012; Cummings

and Walker, 2000),2 policy-makers continue to rationalize the use of moral appeals (Ito

et al., 2018; Ferraro et al., 2011; Cutter and Neidell, 2009; Reiss and White, 2008) for

voluntary driving reductions, for example, as part of Action Day programs in US cities3

1This is called alert fatigue in the literature. Graff Zivin and Neidell (2009) and Saberian et al. (2017)
study multi-day AQAs and find evidence for alert fatigue after the first AQA day.

2These findings correspond with first-order expectations under the assumption of self-interested, utility-
maximizing agents. Motorists, who pollute the air and thereby impose a negative externality on others,
optimize their private well-being (including private health costs) when deciding how much to drive but
do not factor in the social cost of their choices. In aggregate, this leads to a socially-inefficient pollution
surplus. Policy-makers attempt to solve this collective action problem using moral levers (i.e. DDAs)
or congestion management policies (i.e. transit fare subsidies, congestion pricing, vehicle bans, etc.)
to make driving relatively more costly and shift individual driving choices towards the socially-optimal
level. However, we would not expect self-interested, utility-maximizing agents to be swayed by an
appeal for collective benefits at a private cost, beyond its direct effect on private well-being.

3See https://www.airnow.gov/aqi/action-days/(retrieved June 29, 2023) for a list of Action Day
programs in the US.
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and similar policies in major urban areas around the world.4 Our first contribution in

this paper is to model this thinking.

We then test this model empirically in Stuttgart, Germany, a European metropolitan

setting seemingly well-suited for a program targeting voluntary driving reductions due

to its abundant transit alternatives5 and widespread environmental preferences.6 Local

authorities in Stuttgart, Germany raised a particulate matter AQA (Feinstaubalarm)

to inform the public of high ambient air pollution levels during multi-day periods with

limited atmospheric interchange capacity from January 2016 to April 20207. When

Stuttgart’s AQA is active, authorities also temporarily reduced public transit fares and

widely broadcast DDAs encouraging motorists to stop driving cars and to switch to

riding public transit, cycling, walking, working from home, or otherwise abstaining from

driving. Our ordinary least squares (OLS) regression analysis leverages daily traffic

flows from 56 automatic traffic counters (ATCs) located within and just beyond the

Stuttgart administrative border to measure the impact of DDAs on aggregate car trip

demand. Our preferred estimation framework studies multi-day, dynamic DDA effects

using a difference-in-difference (DiD) event study design that compares traffic levels in

Stuttgart with traffic levels in the neighboring metropolitan city of Munich using data

from an additional twenty ATCs located there.8

Our empirical results make three additional contributions to the literature. First, we

study the overall impact of DDAs on voluntary driving reductions outside the United

States for the first time, and thereby provide evidence about whether previous results

transfer to other policy settings. Our analysis of Stuttgart traffic data shows that vehicle

flows in the city decrease at best by about 0.6% on days when authorities implement

4For example, see program descriptions for Korea (https://airkorea.or.kr/eng/O3Alert?pMENU_NO=
162, retrieved December 2, 2024) or Île de France, France (https://www.airparif.fr/en/index.php/
procedure-dinformation-et-dalerte, retrieved December 2, 2024).

5Stuttgart has an extensive public transportation network consisting of seventeen regional train lines,
seven suburban train lines, nineteen light-rail lines, and 390 bus lines.

6A coalition led by the Green party has governed the state of Baden-Württemberg since 2011, Germany’s
first Green party state Minister-President was elected in Baden-Württemberg in 2011 and reelected in
2016 and 2021, and a Green party politician has held office as Stuttgart’s Mayor since 2013.

7The German Weather Agency (Deutscher Wetterdienst, DWD) defines days with a limited interchange
capacity as days with low rainfall, low wind speed, nighttime ground inversions, and low daytime
atmospheric mixing layers. In these conditions, particulate matter pollution can easily accumulate to
higher levels. The program targeted collective environmental benefits from emissions reductions related
to to driving reductions. See Background for more details.

8Munich is a similarly sized metropolitan city in southern Germany (metropolitan region population:
6.2 million in Munich vs. 5.3 million in Stuttgart in 2023) with highly correlated traffic, pollution, and
meteorological conditions that, like Stuttgart, failed to comply with EU air quality regulations during
the DDA policy implementation period (2016-2020) but, unlike Stuttgart, did not implement an AQA
program or a DDA policy.
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DDAs. Previous evidence on DDA effectiveness finds that DDAs can be moderately effec-

tive (up to a 3% reduction, Cutter and Neidell, 2009), statistically ineffective (Noonan,

2014; Sexton, 2012; Henry and Gordon, 2003; Cummings and Walker, 2000), or even

counter-productive (Tribby et al., 2013) in temporarily abating driving in the United

States. Unlike most previously studied programs in North America, our empirical set-

ting has an abundance of transit alternatives and widespread environmental preferences,

suggesting that a DDA has high impact potential. However, estimated DDA impacts

in our metropolitan European setting appear no more effective than previously studied

DDA programs in the North American context.

Second, we highlight temporal heterogeneity in DDA effectiveness. We show that

DDAs in our setting lead to traffic reductions up to 3% on the first three DDA days

after activation, but that effectiveness wanes during prolonged DDAs. Unlike previous

studies that are limited to analyzing second day alert fatigue (Graff Zivin and Neidell,

2009; Sexton, 2012; Saberian et al., 2017), our empirical setting enables us to evaluate

alert effectiveness over a much longer treatment period. We find evidence suggesting

that DDAs are, in general, most effective when they are soon to be lifted and that traffic

may rebound on the second day after DDAs end, which both point to intertemporal

substitution factoring into decisions about when to adhere to appeals for voluntary

pollution mitigation. In general, our results on prolonged DDA treatment exposure may

be particular valuable in settings with more persistent pollution episodes than previously

studied North American settings.

Third, we provide novel evidence about the sensitivity of DDA effectiveness to the

recovery period between DDA events. In our theoretical framework, we hypothesize that

DDAs are less effective after short recovery periods. Our empirical results confirm this

prediction and show that DDAs implemented with at least a nine day recovery period

reduce traffic by nearly 5% at the city center. To the best of our knowledge, this paper is

the first to test the importance of this temporal dimension for DDAs empirically and pro-

vides guidance for policy-makers deciding how to incorporate frequency considerations

into the design of AQAs, DDAs, and other voluntary mitigation policies.

The remainder of this paper is structured in the following manner. The next section

provides background information about Stuttgart’s AQA program and its accompanying

DDA. In section 3, we formalize a theoretical framework for DDAs. Section 4 describes

the data we use for our empirical analysis, while section 5 explains our estimation strat-

egy for identifying DDA impacts. Section 6 discusses our results and section 7 concludes.
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2 Background

2.1 Stuttgart’s Air Quality Alert Program

On January 1, 2016, Stuttgart city officials introduced its AQA program as part of

a multi-policy air quality plan targeting compliance with EU air quality standards.9

During the PM season,10 the AQA program notified residents in the greater Stuttgart

metropolitan region of upcoming and ongoing poor air quality episodes via electronic

road signs, radio, television, social media, and newspapers. The AQA program’s DDA

encouraged motorists not to drive and instead to use less-polluting transportation. In

contrast to health-oriented air quality alert programs in other cities, local authorities did

not explicitly warn Stuttgart residents about the negative health effects of air pollution

exposure; the AQA program focused on the collective environmental benefits or so-called

“quality-of-life improvements” that could result from a widespread temporary switch

away from cars.11 In early 2020, local authorities announced plans to abandon the AQA

program after April of that year, citing its success in reducing air pollution in the city.12

The city of Stuttgart has approximately 630,000 residents, and based on commuting

statistics from the German Federal Employment Agency and the Baden-Württemberg

State Statistical Office, we estimate that roughly 382,000 commuters (73% of individuals

employed in the city) travel by car or motorcycle in the city of Stuttgart on a given

workday, compared to 66,000 (13%) who take public transit and 75,000 who walk or

bike (14%).13 In two telephone surveys conducted by the city government in early

9Under EU Air Quality Directive 2008/50/EC, daily average ambient PM10 concentrations are not to
exceed 50 µ g/m3 more than 35 times per calendar year. From 2004 through 2017, daily ambient
PM10 concentrations at the Neckartor air quality monitor in central Stuttgart annually exceeded this
legal threshold. The city government, under the auspices of the state government, implemented an air
quality improvement plan which included establishing a low emissions zone and corresponding bans on
high polluting vehicles, upgrading public transit and bicycle infrastructure, investing in cleaner public
transit fleets, expanding park-and-ride parking lots, lowering speed limits on busy streets, banning wood
burning stoves during AQAs, reducing public transit fees, increasing street cleaning, and incentivizing
employers to recruit employees to purchase monthly public transit tickets.

10Stuttgart authorities can call an AQA during the particulate matter (PM) season from October 15th
to April 15th, when PM levels are typically highest.

11Residents may certainly have been aware of air pollution exposure’s negative health impacts ex ante,
may have become informed of them through AQA-adjacent media programming, or may have inferred
them from the nature and language of the AQA program.

12Stuttgarter Zeitung. 2020. Bessere Luft in Stuttgart: Feinstaubalarm wird im April abgeschafft.
January 17, 2020.

13Hence, for each percentage point change in daily car commuters on DDA days, we estimate that about
4,000 car commuters switch their mode of transit or work from home. We anticipate that these are
low ballpark estimates for the daily number of vehicles on Stuttgart roads, as our calculations do not
include non-employed motorists (e.g. retirees, students, unemployed people, etc.), nor do estimates
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Figure 1: Online search interest for particulate matter alert (“Feinstaubalarm”) and par-
ticulate matter (“Feinstaub”, PM) in Baden-Württemberg from January 2014 through
May 2022. From January 2016 to April 2020, the AQA program was active annually dur-
ing the PM season from October 15 to April 15. Search volume is relative to maximum
search volume (=100) in February 2017. Data source: Google Trends.
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Figure 2: DWD Decision Tree for calling and ending an AQA. The “Particulate Matter
Alert” outcome leads authorities to broadcast a Don’t Drive Appeal (DDA). Information
Source: DWD.

2016, 90-92% of respondents (n1=1,008, n2=1,004) reported having heard about the

AQA program and 15-25% of respondents stated that they reduced their car use on

DDA days.14 The survey results and online search query data (figure 1) confirm that

AQA messaging arrives in the general population. However, survey responses were

self-reported and were collected when the AQA program was new. Surveyors neither

elicited nor observed the actual extent of driving reductions, and social-desirability bias

presumably leads individuals to over-report driving reductions, so these findings must

be interpreted cautiously.

2.2 Don’t Drive Appeal Conditions and Timing

Stuttgart authorities decide whether to call an AQA and broadcast a DDA using a

decision tree based on six binary atmospheric conditions. On each day during the PM

include other reasons for driving into the city (e.g. leisure or business travel, through traffic, etc.).
14See Befragung zum Thema Feinstaubalarm in Stuttgart und Umgebung (URL: https://vm.

baden-wuerttemberg.de/fileadmin/redaktion/m-mvi/intern/Dateien/PDF/Feinstaub-Alarm_

Auswertung_Umfrage__160208.pdf, published: February 8, 2016, retrieved: December 2, 2024)
and Befragung zum Thema Feinstaubalarm in Stuttgart und Umgebung im Zeitraum 26.02.2016
bis 28.02.201 (URL: https://vm.baden-wuerttemberg.de/fileadmin/redaktion/m-mvi/intern/

Dateien/PDF/Feinstaub-Alarm_Auswertung_Umfrage__160208.pdf, published: March 10, 2016,
retrieved December 2, 2024).
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season, the German Weather Agency (DWD) takes stock of the following conditions:15

• Condition 1 (primary): Whether the daily mean PM10 concentration at Neckartor moni-

toring station is over 30 µg/m3 and no rainfall is forecast until 12am of the first forecast

day.16

• Condition 2: Whether no rainfall is forecast for both the bridge day17 and the first forecast

day.

• Condition 3: Whether wind blows with an average wind speed over 3 km per hour from

180°-330°.

• Condition 4: Whether there is a nighttime ground inversion.18

• Condition 5: Whether there is a low daytime mixing layer.19

• Condition 6: Whether average wind speed is below 3 km per hour.

According to the outcome of each binary condition and the corresponding decision rules

in figure 2, DWD classifies the atmospheric interchange capacity as either “not limited,”

“limited” or “strongly limited” with only the latter leading to an AQA. There are two

paths to an AQA. First, as the primary condition, fulfilling condition 1 is sufficient

for activation. Second, if condition 1 is not satisfied, then conditions 2 and 3, either

condition 4 or 5, and at least four criteria overall must be fulfilled for the city to call an

AQA. In the latter path, the 30 µg/m3 threshold from condition 1 is no longer relevant

for activation.

If local authorities decide to call an AQA, they begin notifying the public in the

early afternoon of the issue day of high air pollution levels and about a forthcoming

DDA that will be activated 36 hours later (see figure 3, event time: -2). A bridge day

(event time: -1), when the public continues to be informed about the upcoming AQA

but the DDA has not gone into effect, follows the issue day. The DDA comes into

effect after the bridge day at 0:00 am of the first forecast day (event time: 0). The

DDA continues for at least a second day (event time: 1) and remains in effect until the

15See Schadstoffrelevante Kriterien des Deutschen Wetterdienstes (URL: https://www.stuttgart.de/
medien/ibs/Neue-DWD-Kriterien-300916.pdf, retrieved: December 2, 2024)

16Snowfall and sleet are treated as rainless.
17There is a one day pause between the day an AQA event is announced and the day the DDA is

activated.
18Nighttime ground inversion is defined as an air layer within which temperature increases with altitude.

Such an inversion traps particulate matter in the Stuttgart valley.
19The mixing layer height indicates the interchange capacity of the low lying air masses. The lower the

mixing layer height, the smaller is the interchange capacity. The criterion is fulfilled if the mixing layer
height is lower than 500 meters during the day.
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Figure 3: Air quality alert (AQA) and don’t drive appeal (DDA) timing. For our
analysis, DDA activation corresponds with event time period 0. Information Source:
City of Stuttgart.

DWD forecasts two consecutive days where the atmospheric interchange capacity is not

“strongly limited.” Local authorities announce the end of the AQA and DDA two days

before DDA messaging subsides.

Importantly, AQA and DDA designation is based on weather forecasts, not actual

weather conditions on a given day. If authorities call an AQA, unanticipated meteoro-

logical changes between the issue day and any subsequent day may improve atmospheric

interchange capacity to the extent that some AQA conditions may no longer be fulfilled

on that day. On these days, DDA messaging continues to be broadcast although the

atmospheric conditions are not necessarily fulfilled. By similar logic, actual meteorolog-

ical conditions may worsen the atmospheric interchange capacity to the extent that, on

a given non-DDA day, a DDA should have been broadcast, even though it was not. At

the margin, local authorities can exercise limited discretion when deciding whether to

initiate an AQA event and broadcast the DDA, specifically in cases when thresholds are

just barely met (e.g. a small amount of rainfall may not be deemed sufficient to clear

particulates from the air).

3 Theoretical considerations

Stuttgart’s policy-makers employ a DDA in the ostensible belief, publicly expressed,

that a morally framed request directed at car owners, combined with a public transit

subsidy, will reduce driving. To see whether this belief can be rationalized, we develop a

plausible mental model that formalizes this thinking. This simple theoretical framework

is informed by existing models of modal switching for the Spare The Air (STA) program
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in the San Francisco, USA Bay Area (Cutter and Neidell, 2009; Sexton, 2012) and

urban congestion management policies in London, UK and Santiago, Chile (Basso and

Silva, 2014). To adapt the framework for the case at hand, we explicitly downplay the

individual health aspects at the heart of the Bay Area’s STA program, which – unlike

for the case of Utah’s “yellow alert days” (Caplan, 2023) – are not part of Stuttgart’s

DDA. We instead emphasize its moral appeal considerations.

The literature identifies injunctive and descriptive norms as the main pathways

through which a moral appeal can change the behavioral calculus of which action to

choose (Bicchieri, 2005). Injunctive norms define how an individual ought to act. They

constitute abstract moral absolutes, that is behavioral benchmarks independent of other

people’s behavior. Descriptive norms, on the other hand, reflect how most other people

act. They are observable behavioral patterns in the population. In both cases, the lit-

erature has argued, individuals receive emotional rewards or losses from themselves and

others as a function of adherence to or deviation from the norm. The associated feelings

of righteousness and approval and of shame and guilt enter the utility function and can

thus affect decision-making (Battigalli and Dufwenberg, 2007; Zafar, 2011).

Policy-makers are unlikely to be unaware of the subtle distinction between injunctive

and descriptive norms. Yet, their mental model of DDAs may well capture the idea of

injunctive norms by postulating that a DDA makes people attach positive feelings to

deciding not to drive.20 Descriptive norms could be captured by attaching to driving

a negative feeling whose strength depends on the effectiveness of the appeal on others:

Guilt and shame are strongest if the individual driver finds himself the only driver

on the road, particularly if watched by non-drivers. They do not arise when traffic

density during the DDA event is the same (or even higher) than before (Zafar, 2011).

Considerations of positive and negative feelings triggered by adhering and deviating

from norms would provide policy-makers with a behaviorally informed model of how car

owners respond to the introduction of a DDA. They can also be extended to the question

of how effective a DDA is likely to be over time. Policy-makers’ intuition that the impact

of DDAs wears off over a multi-day DDA event and needs time to recover between DDA

events accords with well-established findings in psychology. Experimental tests of the

theory of “ego depletion of self control” (Baumeister et al., 2000) consistently show that

the emotional costs of not complying with norms that require a change from previous

behavior decrease over time (Dang, 2018) and require a ‘recovery period’ between norm

activation events (Tice et al., 2007). Considerations of both a static and dynamic nature

20Equivalently, it could be introduced as a negative feeling attached to driving. Analytically, it leads to
the same results.
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are therefore likely to populate policy-makers’ mental models of how a DDA affects

driving.

3.1 Static model

To give some analytical heft to policy-makers’ reasoning, we assume in line with the

static congestion model of Basso and Silva (2014) that at any given point in time t, each

individual i with access to a car and wishing to travel decides between driving (D) and

not driving (ND) to reach their destination.21 Driving is associated with utility (time

arguments suppressed)

UD
i = V D

i − τitD(1 +QD)− pD − 1AEi max
{

(Q
D −QD); 0

}
(1)

while not driving is associated with utility

UND
i = V ND

i − τitND − pND(1− 1Aδ) + 1AG (2)

with 1A an indicator variable that is one if an appeal has been issued and zero

otherwise.

Expressions (1) and (2) capture that in the absence of a DDA (1A = 0), the respective

utilities are a function of the intrinsic value that individual i associates with driving D

and not driving ND, V D
i and V ND

i , the expenses of driving and not driving at market

prices, pD and pND, and the mode-independent22 opportunity cost of time τi multiplied

by the mode-specific travel time, tD and tND. As in other models, total driving time

is approximated as linear in car traffic density, measured by the aggregate demand for

driving QD, along the entire itinerary, tD(1 + QD).23 The driving-related air quality

impacts that play a central role in the health-messaging models by Cutter and Neidell

(2009) and Sexton (2012) are neglected in our representation of the policy-makers’ mental

model of moral appeals.

When a DDA is issued (1A = 1), three additional factors in expressions (1) and (2)

are activated. First, in (2), the policy-maker reduces the cost of public transit through a

discount δ, reducing non-driving expenses to pND(1− δ). Second, also in (2), the policy-

21These model formulations purposefully neglect the extensive margin of deciding not to travel.
22Empirical evidence points to mode dependence: Time spent in one’s own car has a lower opportunity

cost than time spent in public transit. We abstract from this detail here.
23Total travel time is tD when no other car is on the road (QD = 0) and increases in proportion to use

by drivers. The linear approximation overestimates the effect of density on travel time for low levels of
density and vice versa for high levels. This will lead to a slight overestimation of the effect of a DDA
close to road capacity.

10



maker conveys through the appeal an injunctive norm that foregoing the use of car is

the ‘right thing to do’. The affective benefits of not driving are captured by a warm

glow parameter G associated with norm compliance. Third, in (1), the DDA conveys a

descriptive norm about driving: The greater the reduction in traffic densities during the

DDA event relative to before, the greater the emotional cost to someone still driving.

To approximate this effect, a simple linear formulation captures the emotional costs

associated with violating the descriptive norm by driving as Ei max
{
Q

D −QD; 0
}

, with

Q
D

denoting aggregate demand for driving outside a DDA event. For traffic densities

QD at or above pre-DDA levels, the emotional cost of driving is zero; for densities below,

it is Ei(Q
D −QD). To bound the possible magnitude of the emotional cost, we assume

for simplicity that E < τtD, i.e. the marginal driver contributes more to road congestion

than to relieving emotional cost.

As in Basso and Silva (2014), equilibrium traffic is the aggregate outcome of indi-

viduals deciding to drive if UD
i − UND

i > 0. Across individuals, this leads to aggregate

demand for driving of

QD =
∑
i

1
D
i , (3)

with 1
D
i and indicator variable that is one if for individual i, UD

i − UND
i > 0.

As a result of the congestibility of the road network, there is a demand equilibrium

outside DDA events with a simple closed-form solution under the assumption of identical

agents of the type

Q
D

=
1

τtD
{∆V −∆p− τ∆t} (4)

with ∆V = V D − V ND denoting the difference in intrinsic values, ∆p = pD − pND the

difference in expenses, and ∆t = tD − tND the difference in travel time between driving

and not driving. Equilibrium traffic density increases in the intrinsic value differential

and decreases in the price and travel time differential between driving and not driving.

It is scaled down by the effective cost of time of driving τtD on account of the congestion

externality that every driver imposes on all other drivers in the road network.

A few steps of simple algebraic manipulation also yield the equilibrium traffic density

during a DDA as

QD = Q
D − G+ pNDδ

τtD − E
(5)

This leads to our first hypothesis.

Hypothesis 1 A DDA reduces equilibrium traffic: Static equilibrium traffic density is
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always lower in the presence of a DDA compared to its absence. The reduction in equi-

librium traffic depends positively on the level of material incentives for modal switch and

on the warm glow of norm-compliant behavior.

Hypothesis 1 predicts that the first-order impact of a DDA is to reduce traffic. This

means that the policy maker achieves the intended policy impact of the DDA in equi-

librium. The reduction increases in the warm glow of the appeal, G, and in the public

transit discount, δ. Their effect size is scaled by the effective cost of driving time, τtD,

net of the emotional cost of driving when others do not, E. The static congestion model

highlights the presence of an instrument for inducing a switch from driving that policy-

makers in the city of Stuttgart did not consider: Increasing travel time tD through speed

restrictions.

3.2 Dynamic considerations

On most days of the year, potential drivers take their driving decision against the back-

ground of no DDA, consistent with a predicted density Q
D

. The announcement of a

DDA, its implementation for an uncertain length of time, the announcement of its re-

moval, and the removal represent four transitions during which traffic density is driven

by additional dynamic factors. At least two factors are at play that shape changes

in traffic densities during transitional periods, intertemporal substitutability and “ego

depletion”.

The literature commonly assumes that households aim to realize an individually

optimal pattern of driving and non-driving that is determined by finite intertemporal

substitutability between driving today and driving tomorrow (Cutter and Neidell, 2009;

Rivera, 2021; Caplan, 2023).24 Deviations from this pattern are costly in welfare terms,

yet reflect optimal adjustments to a DDA shock. Depending on whether the DDA

shock is in the form of a DDA being announced to be coming into force or to be lifted,

24Theory does not provide a complete characterization of individual optimal dynamic demand behavior
for a congestible setting in which a third party (in this case the policy-maker) changes the cost structure
of consumers in a stochastic way. There is a literature on optimal dynamic behavior in settings such as
air travel in which parties on the supply side, such as airlines, have committed to supplying a certain
capacity at a certain point in time, but have not committed to a price path up to that time (Deneckere
and Peck, 2012; Board and Skrzypacz, 2016; Dilme and Li, 2019). Another related literature examines
labor-leisure choices in stochastic decision environments (Camerer et al., 1997; Hoffmann and Rud,
2024). While related, neither of these approaches accurately captures the specifics of a modal transport
choice of a private household facing the probabilistic imposition and lifting of a DDA. In the appendix,
Caplan (2023) provides a possible theoretical model based on the behavior of myopic individuals. Such
models make somewhat different predictions than those based on dynamically optimizing individuals
(e.g. Dilme and Li, 2019).
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this adjustment can have two effects. In the first case, there is a potential anticipation

effect: Some household now bring forward to the bridge day driving activities that would

otherwise has happened on a day that now falls into the DDA episode. This gives rise

to Hypothesis 2.

Hypothesis 2 There is an anticipation effect of announcing a DDA such that traffic is

higher on bridge days. Households’ planning horizons allow a share of driving activities

to be shifted from a future DDA day to the bridge day so as to benefit from a higher net

utility of driving on a non-DDA day.

We expect the anticipation effect on traffic to be positive, but limited since the DDA

announcement only allows for a single bridge day before the DDA comes into force.

In the second case, the announcement of the DDA being lifted, there is a potential

postponement effect: Some households that would have driven on a DDA day now shift

driving activities backwards. This allows them to benefit from the higher intrinsic utility

of driving on a non-DDA day tomorrow rather than driving on a DDA day today. The

presence of a postponement effect affects traffic volumes both on the day ending the

DDA and on the first non-DDA day.

Hypothesis 3 There is a postponement effect of lifting a DDA such that traffic is lower

on the n-th day of a DDA if that day precedes the lifting of the DDA – and higher on a

non-DDA day if that day is the first day following a DDA. Households’ planning horizons

allow a share of driving activities to be shifted from a current DDA day to the following

non-DDA day so as to benefit from a higher net utility of driving on a non-DDA day.

Hypotheses 2 and 3 summarize our predictions of change in traffic during the tran-

sition from a non-DDA to a DDA phase and vice versa, driven by intertemporal sub-

stitution once the uncertainty of whether a transition will take place has been resolved.

Hypothesis 4 completes the analysis with a focus on the dynamics during the DDA.

For the period during which the DDA is in force and its lifting has not been announced

yet, expression 5 provides a simple characterization. This characterization suggests a

constant level of traffic unless there are changes in the emotional cost of non-compliance

with the DDA norm (E).25 Such changes are consistent with empirical evidence that

supports theories of “ego depletion”. This depletion process leads to an emotional cost

25Additional factors could be changes either in the policy variable δ or in the psychological variables of
warm glow (G). For the first, there is no corresponding data in our empirical context. For the second,
we are not aware of established theories of the dynamics of warm glow.
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of driving (E) that is highest on the first day of a multi-day DDA event and declines

over the duration of the DDA, leading to an increase in traffic.26

Hypothesis 4 There is an ego depletion effect of a continuing DDA such that traffic

increases during a multi-day DDA towards non-DDA levels until the lifting of the DDA

is announced.

A corollary of Hypothesis 4 is that – since ego depletion requires a recovery time

– drivers are predicted to be less responsive to a DDA after shorter recovery periods

between DDA events.

Together, hypothesese 1 through 4 emphasize three aspects. One is that policy-

makers can rationalize their belief in the effectiveness of DDAs: Invoking the norm-

setting effects of DDAs in a behaviorally informed model provides a causal mechanism for

affecting the choice whether to drive or not. The second is that the predicted equilibrium

car traffic density under a DDA is below non-DDA levels. The third aspect is that the

dynamic patterns of driving choices within and between multi-day DDA events make

specific empirical predictions: Following the announcement of a DDA, traffic volumes

first increase on the bridge day due to an anticipation effect before dropping on the first

DDA day. Traffic then recovers through ego depletion, before the postponement effect

induces a drop on the last DDA day and a surge of traffic on the first non-DDA day.

The reduction in traffic due to the DDA is expected to be negatively affected when DDA

events are spaced closely together.

While the framework is good at capturing the moral appeal considerations of policy-

makers, it probably does injustice to their understanding of the complexity of driving

decisions. For example, it neglects issues of expectations and learning that are likely

to be particularly important during early phases of the DDA program as car owners

closely observe traffic densities. It also neglects health-related aspects of driving decisions

(Cutter and Neidell, 2009; Sexton, 2012) and the congestibility of public transit (Basso

and Silva, 2014). These complexities can be expected to impact on the success of DDAs

– and to be part of the ex-ante assessment undertaken by policy-makers in a more or

less systematic fashion.
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Figure 4: Stuttgart with automatic traffic counters (ATCs) by data source, road net-
work, Schnarrenberg DWD weather station, and Neckartor AQA trigger monitor. Data
sources: OpenStreetMap, IVLZ, BaSt, BKG, LUBW, and DWD.
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Table 1: Summary Statistics: Vehicles per Day by City and Day-of-the-Week

Mon Tue Wed Thu Fri Sat Sun Overall

Stuttgart, n=56
Mean 18,889.0 19,232 19,743.7 20,142.8 20,119.7 16,156.6 13,274.3 18,238.0
Std. Dev. 14,879.6 15,229 15,469.0 15,709.0 15,862.4 12,840.2 11,191.5 14,745.2
Obs. 3,992.0 3,982 3,949.0 3,954.0 3,953.0 3,975.0 3,868.0 27,673.0
Min 37.0 56 51.0 75.0 47.0 59.0 17.0 17.0
Max 66,072.0 67,423 69,957.0 75,021.0 76,671.0 60,536.0 58,609.0 76,671.0

Munich, n=20
Mean 45,283.2 45,652 47,134.7 48,382.0 48,223.6 37,981.4 32,709.4 43,609.8
Std. Dev. 15,477.2 15,632 15,891.2 16,041.7 16,657.0 12,730.1 11,739.7 15,964.0
Obs. 1,676.0 1,680 1,664.0 1,664.0 1,682.0 1,682.0 1,682.0 11,730.0
Min 9,720.0 3,620 5,367.0 5,924.0 6,819.0 5,574.0 4,044.0 3,620.0
Max 77,810.0 81,062 82,570.0 88,091.0 87,469.0 87,787.0 61,615.0 88,091.0

4 Data

4.1 Traffic Data

We obtain hourly vehicle traffic counts for the five PM seasons from January 2016

through December 2019 for 46 automatic traffic counters (ATCs) operated by the City of

Stuttgart’s Integrated Traffic Control Center (Integrierte Verkehrsleitzentral, IVLZ) and

for 30 ATCs from the Federal Highway Research Institute (Bundesanstalt für Strassen-

wesen, BaSt) located in Stuttgart and Munich. Although we also acquire data from

January 2020 through April 2020, we exclude this from our analysis due to the un-

precedented effect of COVID-19 lockdowns on mobility and the city’s announcement in

January 2020 that the DDA program would conclude after the 2019-2020 PM season.

In our dataset, daily counter-level traffic flows are only recorded as the sum of twenty-

four hourly counts if data are available for all 24 hours of a day, otherwise they are

recorded as missing. Of 55,708 possible counter-day observations spanning 76 coun-

ters and 733 particulate matter season days, we ultimately observe 39,403 vehicles per

counter-day observations (70.7% of all possible counter-days). Although the share of

missing data is considerable for some ATCs, we do not believe that there is a systematic

pattern of missing data that would affect our empirical analysis.

On average, 18,238 vehicles pass each Stuttgart ATC each day, with traffic increasing

moderately (+6.5%) over the course of the work week before dropping off on Saturdays

(-14.5%) and more considerably on Sundays (-30%) relative to Mondays. Public and

school holidays also have considerably lower traffic levels (-18.4%) compared to non-

26This can be seen in expression 5 by differentiating traffic QD with respect to (falling) emotional cost

−E: − dQD

dE
= G+pNDδ

(τtD−E)2
> 0.
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holidays. Traffic flows are also subject to daily shocks (e.g. accidents, congestion),

weekly and monthly variation (e.g. short-term construction sites, traffic re-routing),

seasonality, and long-term shifts in road usage (e.g. vehicle bans, road closures, new

road infrastructure, transit alternatives, macroeconomic shocks).

Figure 4 maps Stuttgart ATCs and categorizes them into “center” counters located

within five kilometers of Stuttgart’s administrative centroid (n=19) and “periphery”

counters located five kilometers to ten kilometers from the centroid (n=37). The inner

five kilometer radius proxies for the AQA’s target region in the city center, which is

located at the middle of a basin and contains the Neckartor alert trigger PM monitor.

The periphery counter group from five kilometers to ten kilometers contains many of the

closest park-and-ride locations to the city center, where, on DDA days, car commuters

can take subsidized public transit for the final leg of their commute to reach the city

center. Periphery traffic flows are considerably higher (20,002 vehicles per counter-day)

than city center traffic flows (14,465 vehicles per counter-day).

The properties of our traffic data limit the scope of our analysis in three ways. First,

we observe aggregate traffic counts per ATC and cannot identify individual intensive

and extensive driving margins. That is, we cannot decipher between a relatively small

set of automobiles on the road being driven more intensively (i.e. high daily vehicle

kilometers traveled per car) and a proportionally larger set of automobiles being driven

relatively less intensively (i.e. fewer daily vehicle kilometers traveled per car). Second,

we are not able to observe individual-level modal switching. That means we can only

assess the DDA’s impact on driving reductions but not on the AQA’s other recommended

behaviors like using public transit or cycling.27 Third, our data set consists of traffic

flows for a small subset of all streets in Stuttgart, but we do not believe this is a relevant

limitation to our data. The 56 Stuttgart ATCs we use in our analysis are distributed

across 28 sites, which we believe are representative of overall traffic conditions in Greater

Stuttgart as they are dispersed across diverse road types, along key traffic arteries, and

in different cardinal directions from the city center.
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Table 2: Summary Statistics: Covariates by City and Stuttgart DDA Status

Stuttgart Munich Difference

(1) (2) (3) (4) (5) (6) (7) (8)
DDA No DDA t-Test DDA No DDA t-Test t-Test t-Test
Mean Mean (2)-(1) Mean Mean (5)-(4) (1)-(4) (2)-(5)

Temperature (◦C) 4.38 6.20 1.83∗∗∗ 3.47 5.58 2.11∗∗∗ -0.91 -0.62∗

Rainfall (mm) 0.14 1.58 1.44∗∗∗ 0.21 1.58 1.37∗∗∗ 0.07 -0.01
Snowfall (mm) 0.00 0.00 0.00 0.01 0.04 0.03 0.01 0.04
Sleet (mm) 0.04 0.33 0.29∗∗∗ 0.06 0.79 0.73∗∗∗ 0.02 0.46∗∗∗

Rel. Humidity (%) 73.93 77.47 3.54∗∗∗ 75.67 76.33 0.66 1.74 -1.14
Sunshine Hours 5.13 2.34 -2.79∗∗∗ 4.90 2.43 -2.47∗∗∗ -0.23 0.09
Wind (km/h) 2.57 3.37 0.80∗∗∗ 2.33 3.43 1.09∗∗∗ -0.24∗∗ 0.06
PM10 (µg/m3) 37.74 19.43 -18.32∗∗∗ 31.24 18.10 -13.14∗∗∗ -6.50∗∗∗ -1.32
Holiday (=1) 0.06 0.28 0.22∗∗∗ 0.09 0.33 0.24∗∗∗ 0.03 0.05

Days 250 483 733 250 483 733 500 966

Notes: Columns 1 and 4 report mean covariates in Stuttgart and Munich, respectively, on days when
a don’t drive appeal (DDA) has been called in Stuttgart. Columns 2 and 5 report mean covariates in
Stuttgart and Munich, respectively, on days when a DDA has not been called in Stuttgart. Columns 3
and 6 report the results of two-sample t-tests comparing differences in means between DDA days and non-
DDA days for each city. Columns 7 and 8 report the results of two-sample t-tests comparing differences
in means between Stuttgart and Munich covariates on DDA days and non-DDA days, respectively.
Significance level: * = p <0.05, ** = p <0.01, and *** = p <0.001

4.2 Weather, Pollution, and DDA Status

We follow the existing AQA literature to control for daily weather factors which may

influence driving and AQA activation such as temperature, precipitation by type, and

wind speed. We retrieve weather data for the Schnarrenberg weather station from DWD

Open Data (see location in figure 4). Local authorities use atmospheric data from

this weather station to evaluate the AQA conditions, so we believe it is most relevant

when controlling for program determinants. Furthermore, this weather station is located

centrally in Stuttgart, so we assume that weather conditions there are the best available

measure of meteorological factors that might influence commuters.28 Air pollution data

come from the Baden-Württemberg State Institute for the Environment, Survey and

27We have inquired at the city of Stuttgart and its public transportation partners about alternative
transit records. The city nor its public transportation partners maintain turnstiles at public transit
stations that would deliver daily public transit statistics. Available overall monthly ticket sales do not
have the temporal or spatial resolution necessary for our analysis. The city does track daily cycling
counts at two automatic bicycle counters over the time period of interest, and this data could be
exploited in a future extension of our analysis.

28We could merge weather data from the Stuttgart airport weather station at the city’s southern pe-
riphery to ATCs located close to it, but we believe weather conditions at the Schnarrenberg weather
station in Stuttgart are most indicative of commuters’ expectations about the city center. Moreover,
we don’t expect that accounting for differences in local weather variation over such short distances
(i.e. less than fifteen kilometers) would significantly affect our results.
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Nature Conservation (Landesanstalt für Umwelt Baden-Württemberg, LUBW), which

monitors PM10 concentrations in the city center (see location in figure 4). We perfectly

observe DDA status and manually input it from an official Stuttgart website as a binary

variable that equals one on days when a DDA is called and zero otherwise (figure 5).

Figure 5: DDA days split by median recovery time (9 days) from January 2016 through
December 2019. Data source: City of Stuttgart and own calculations.

In comparison to other DDAs and AQAs studied in the literature, Stuttgart’s DDA

is implemented very frequently and for long durations.29 Over 733 possible AQA days

from January 2016 through December 2019, Stuttgart authorities broadcast a DDA on

250 days (34%) in 44 multi-day DDA events with an average duration of 5.7 days. Table

2 shows that DDA days are, on average, colder, less windy, less humid, sunnier, and

more polluted in Stuttgart than non-DDA days, which is in line with the AQA design.

DDA days also experience less non-snow precipitation (i.e. rain or sleet) and fewer heavy

non-snow precipitation events. DDA days are typically preceded by days with similar

weather and pollution levels, while the same holds for non-DDA days. Authorities are

also less likely to call DDAs on public and school holidays, possibly due to lower expected

traffic levels on these days. Figure 5 shows that few DDAs fall on public or school

holidays (14 DDA days during 149 holidays, 9.4%) compared to non-holidays (236 DDA

days during 584 non-holidays, 40.4%). For this reason, we believe that local authorities

may systematically treat holidays differently than non-holidays, so we remove public

and school holidays from parts of our analysis. Table 4 shows that authorities often

announce DDAs on weekends and at the beginning of the week, leading a large share of

DDAs to start on Mondays, Tuesdays, and Wednesdays. DDAs most frequently end on

29For example, in Cutter and Neidell (2009) about 4.5% of days in San Francisco, USA are treated with
an Spare the Air alert, in Saberian et al. (2017) about 1.3% of days in Sydney, Australia experience
an ozone alert day, and in Tribby et al. (2013) about 16% of PM season days have either a yellow or
red AQA. In Sexton (2012), the likelihood of two consecutive Spare the Air days is just 0.6%.
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Saturdays (33%, 12 of 36 possible days). Overall, there is a fairly uniform distribution

of DDA days across the working week with weekends being treated with DDAs less often

than weekdays.

5 Empirical Framework

5.1 OLS Estimation

We begin by estimating the impact of Stuttgart’s DDA on traffic levels using an ordinary

least squares (OLS) regression model described by the following equation:

log(yi,t) = β1DDAt + δ1Mt + γi + φt + εi,t, (6)

where yi,t is the number of vehicles passing counter i on date t, and β1 estimates the

DDA effect as the percent difference in daily traffic counts between DDA days and non-

DDA days.30 The variable of interest, DDAt, is a binary variable that takes on a value

of one on DDA days and zero otherwise. We include weather controls (Mt) to account

for same-day weather conditions in Stuttgart.31 Counter-level fixed effects (γi) account

for counter-specific traffic levels and year-month time fixed effects (φt) flexibly capture

trends and temporal discontinuities that might influence overall car use from month-

to-month (e.g. construction, varying public transit prices, vehicle bans, new transit

infrastructure, etc.). We also include day-of-the-week dummies to account for weekly

traffic cycles and holiday dummies to capture changes in traffic levels during holidays

and vacation periods.

Our estimation equation tests the null hypothesis that the DDA effect is equal to zero

(H0 : β1 = 0), or, in other words, that traffic flows in Stuttgart do not differ significantly

on days when a DDA is broadcast. If, as intended, car use decreases on DDA days, the

DDA coefficient must be negative (β1 < 0) and differ significantly from zero. In our

setting, traffic counts are correlated over time32 and across ATCs.33 In the regression

30Log-scaling the outcome variable leads the coefficient of interest to approximately estimate a percentage
change rather than an absolute change in levels.

31We follow the literature on air quality alerts and transportation choice in including precipitation,
temperature, wind speed as control variables. In addition to absolute precipitation by type, we also
include squared terms for rainfall (mm2), snowfall (mm2), and sleet (mm2).

32We would like to test for serial correlation but the gaps in our dataset and the unbalanced nature of
our panel prevent us from successfully running common STATA commands like xtserial, xtqptest, and
xtistest. It is unclear how to appropriately test for this given our dataset.

33We implement a CD-test for cross-sectional dependance (Pesaran, 2020) in the outcome variable, yi,t,
and reject the null hypothesis of cross-sectional independence (p-value < 0.001).
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model defined by equation (6), we employ heteoscedasticity-robust Huber-White stan-

dard errors and adjust for serial correlation and cross-sectional dependence by clustering

standard errors at the counter level. As we explain in section 5.2, numerous factors could

plausibly bias these OLS point estimates, so we caution against interpreting regression

results from equation 6 as causal estimates. We describe these identification challenges in

the following subsection and turn to a difference-in-difference (DiD) estimation strategy

in section 5.3.

5.2 Identification Challenges

The non-random assignment of DDA treatment from day to day in Stuttgart presum-

ably biases our OLS estimates for several reasons. First, DDAs are broadcast based

on a set of multi-day atmospheric and pollution determinants, meaning that DDA days

are a non-random selection of days that are colder, less windy, less humid, sunnier, and

more polluted than non-DDA days as shown in table 2. Unlike previously-studied AQAs

(Cutter and Neidell, 2009; Noonan, 2014), Stuttgart DDA treatment is also not deter-

mined by a single contemporaneous atmospheric parameter (e.g. a pollution threshold

value which may be imperceptible at the margin). Furthermore, treatment conditions

must be satisfied for a prolonged period to activate, and, when activated, treatment

remains in effect for at least two days independent of how treatment conditions actually

develop.34 Meteorological treatment determinants presumably also directly influence

transportation demand and could thereby confound DDA effect estimates. In particu-

lar, persistent weather conditions, which are endogenous to the treatment protocol, may

correlate with car trip demand and modal switching. For example, some motorists may

be more likely to naturally choose transit alternatives such as public transit or cycling

during prolonged dry, sunny weather, while such conditions also increase the likelihood

that a DDA is called, potentially biasing our DDA effect estimates downward. Selecting

a meaningful control group of untreated multi-day events with similar weather patterns

would best isolate the DDA effect, but the small number of in-sample control days dur-

ing the policy implementation period limits the statistical power of such an approach.

Instead, we control for these factors in our OLS regressions by including same-day co-

34The AQA program design complicates identification via a standard regression discontinuity design as
in Cutter and Neidell (2009) or Noonan (2014). For DDA treatment to activate, multiple atmospheric
thresholds must be fulfilled simultaneously and multiple pathways exist (see section 2). Hence, there is
no single cut-off point we could exploit as a policy discontinuity. Other feasible identification strategies
in our setting include: i) synthetic control with never-treated German cities, ii) difference-in-difference
comparison with pre-program (i.e. pre-2016) traffic in Stuttgart during multi-day periods that fulfilled
the meteorological conditions, or iii) exploiting alert designation errors (e.g. false positives, false
negatives).
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variates, adding first-day and second-day lagged meteorological variables, and flexibly

controlling for trends over time with monthly and weekly fixed effects.

Pollution may also confound our OLS estimates through similar channels. For ex-

ample, even in the absence of a DDA program, high pollution levels may induce some

motorists to naturally avoid pollution and change car trip demand. It is not clear ex

ante which strategies individuals in Stuttgart might employ to reduce pollution exposure

and how this affects car trip demand, but causal DDA treatment estimates would need

to disentangle behavioral responses to high pollution from those due to an active DDA.

We note that a considerable share of untreated days have high pollution levels (due to

the no rainfall conditions in the treatment protocol) and use controls for contemporane-

ous pollution levels and their lags in our OLS regressions to account for the net effect

of pollution avoidance strategies on car trip demand independent of DDA treatment

status.35

Another source of bias arises if local authorities’ expectations about car trip demand

affect their decision whether to call a DDA or not. Local authorities have some discretion

when evaluating AQA conditions and could decide not to call an alert if they don’t see

it as worthwhile, even though the alert conditions are technically satisfied. For example,

in section 4 we demonstrate that local authorities are less likely to broadcast a DDA

during school or public holidays presumably because they already anticipate low traffic

levels on these days. If authorities systematically under-assign DDAs on days with lower

traffic levels, and we do not account for this, our OLS estimates would be biased upward.

But, we cannot observe all of the factors leading authorities to diverge from the AQA

design rules or policy-makers’ traffic expectations, so we prefer OLS specifications that

remove periods with traffic outliers such as holidays and weekends.

Reverse causality between the outcome of interest, car trip demand, and DDA treat-

ment status could also plausibly threaten the internal validity of our OLS estimates. A

larger or smaller number of cars driving in Stuttgart could, by increasing or decreasing

total vehicle emissions, cause PM10 levels to rise or fall relative to the DDA’s 30 µg/m3

primary sub-condition threshold and switch the DDA on or off. However, we note that

car trip demand, and thereby its subsequent effect on pollution, has no influence over the

necessary second sub-condition of primary DDA condition 1, namely whether rainfall is

anticipated or not, nor over the remaining five atmospheric conditions which can acti-

35Pollution avoidance strategies can plausibly affect overall car trip demand. For example, if a significant
share of individuals respond to high pollution levels by staying at home indoors and abstaining from
travel, car trip demand would fall. Alternatively, if a substantial number of commuters drive more in
cars to protect themselves (with filtered, recirculated air) rather than walking and using public transit
outdoors or drive out of the city to avoid pollution, car trip demand would increase.
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vate DDA treatment independent of PM10 pollution levels. Considering this embedded

exogeneity in the DDA treatment protocol, previous findings of moderate to negligible

impacts of DDAs on driving in other settings, and looking ahead to the magnitude of

our estimates presented in section 6, we believe it is improbable that marginal changes

to car trip demand cause treatment status to change.

Finally, the announcement of an upcoming DDA may change motorists’ choices until

the DDA actually takes effect (i.e. on or preceding the issue or bridge day) or after the

end of a DDA (i.e. on the first or second recovery day). We cannot observe whether

individual motorists take additional trips on issue and bridge days or on the first recovery

days after a DDA to avoid taking trips during the DDA, but such a scenario would

bias our overall DDA effect estimates downward. We account for these anticipatory

and posttreatment effects by removing issue, bridge, the first two recovery days from

our sample in some OLS specifications and inspecting for parallel time trends in the

following section.

5.3 Difference-in-Difference Estimation

To recover the causal effect of DDAs on car trip demand, we rely on a difference-in-

difference (DiD) approach that uses ATCs in the metropolitan city of Munich in the

neighboring state of Bavaria as a never-treated control group for Stuttgart ATCs. Com-

pared to OLS estimation, the main advantage of this approach is that we can account for

day-to-day variation in car trip demand driven by unobservable factors common to Mu-

nich and Stuttgart. We believe that Munich is an appropriate comparison for Stuttgart

in our setting because it has a similarly sized metropolitan population, pollution rou-

tinely exceeds annual EU air quality limits, and it has a similarly dense public transit

network, but it never implemented a DDA program. Munich is located over 160 kilome-

ters from Stuttgart, so we believe this minimizes the likelihood of treatment spillovers

from Stuttgart in violation of the stable unit treatment variable assumption (SUTVA).

We compare traffic at ATCs within ten kilometers from the Stuttgart geographic centroid

with a control group of never-treated ATCs located within ten kilometers of the Munich

geographic centroid. This enables us to shed light on treatment effect heterogeneity over

DDA event time and recovery duration.36

A key assumption for successfully identifying causal DiD effects is that Munich is a

36Previous research on AQAs highlighted some important heterogeneities in alert effectiveness. For
example, Tribby et al. (2013) find evidence of spatial displacement effects where traffic increases at
Salt Lake City, USA’s periphery on alert days and Saberian et al. (2017) and Graff Zivin and Neidell
(2009) find evidence of alert fatigue on the second day of ozone alerts.
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Figure 6: This figure plots mean traffic levels across all counters in Stuttgart and Mu-
nich within ten kilometers of each city’s centroid over don’t drive appeal (DDA) event
time. The pretreatment period includes up to ten days before the activation day. The
treatment period includes all DDA days including those when the end of the DDA event
has already been announced.
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meaningful treatment counterfactual for Stuttgart or, in other words, that traffic trends

in Stuttgart develop in parallel with Munich would the DDA policy not be implemented

(Angrist and Pischke, 2009). To test this, we begin by visually inspecting figure 6,

which plot trends in mean logged unconditional traffic levels in the two cities on the

same calendar days averaged over Stuttgart DDA event time. In the pre-DDA window

in figure 6, which spans from 6+ days to 1 day (event time: -6+ to -1) before DDA

activation, mean traffic levels in both Stuttgart and Munich trend downward at a similar

rate from five days before AQA activation (event time: -5) through the bridge day (event

time: -1). In the treatment period (event time: 0-15), traffic levels continue to develop

in a similar manner.

Figure 7: Seven-day moving average of normalized traffic volumes.

In building our argument for common trends between Stuttgart and Munich, we next

refer to figure 7, which depicts normalized traffic trends in each city.37 Average traffic

patterns in Munich trace Stuttgart traffic patterns very well over time as we believe they

capture previously unexplained daily and week-to-week variation in economic activity in

Stuttgart. There are strong seasonal trends but most striking are symmetrical drop-offs

in and reversions to mean traffic levels during and after holiday periods. While controls

37We normalize by calculating in percentage terms how much each day each ATC deviates from its own
mean traffic level and then averaging this across all ATCs in each city.
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for holiday periods and monthly temporal fixed effects would flexibly capture some of

this variation and seasonality, there is a concern that dramatic changes in traffic levels,

as depicted in figure 7, might be absorbed into DDA effect estimates if fixed effect are

temporally coarse. Calendar date fixed effects in counter-level DiD specifications will

resolve this by capturing the day-to-day variation in traffic common to both cities. For

the majority of the program period traffic trends in figure 7 are closely linked, but there

is a noticeable spread in our measure of Stuttgart and Munich traffic levels in the 2016

PM seasons. Counter level fixed effects will help to absorb these differences.

Furthermore, we argue that Munich ATCs are a suitable control group for Stuttgart

ATCs because Munich commuters are exposed to very similar same-day meteorological

and pollution conditions. Table 2 in section 4 includes summary statistics for these

covariates and two-sample t-tests for differences between the two cities. Column 7 shows

that there are no statistically detectable differences in temperature, rainfall, snowfall,

sleet, relative humidity, or sunshine hours between the two cities on days when a DDA is

called in Stuttgart. Munich is, however, somewhat less windy and exposed to about 6.5

fewer µg/m3 of PM10, on average during DDAs. Figure 8 sheds further light on trends in

PM10 pollution over DDA event time. Pollution develops in parallel in both cities in the

pre-treatment period (event time: -6+ to -1), but on the day that the DDA takes effect,

PM10 levels in Stuttgart jump nearly 9 µg/m3 higher than in Munich. Presumably, this

is linked to Stuttgart’s geographic position in a bowl-shaped valley that better traps

pollution than Munich’s morphology. However, mean pollution levels remarkably evolve

in the same fashion in Stuttgart and Munich over event time. Ultimately, differences in

pollution levels don’t appear to be substantial, and controlling for same-day differences

should address concerns about comparability.

To build our DiD models, we rely on a standard two-way fixed effects (TWFE)

specification as a baseline:38

log(yi,t) = β1DDAt × Treatedi + γi + φt + ηXi,t + εi,t, (7)

where DDAt is a dummy variable that designates whether a DDA has been activated on

38The recent TWFE literature has identified shortcomings to TWFE estimators in treatment settings
that extend beyond the classic two period and two group setup (Roth et al., 2023). Our setting has the
canonical two main groups but many pretreatment and posttreatment periods, repeated treatments of
varying duration, and plausible heterogeneous treatment effects between treated units (i.e. between
Stuttgart ATCs). However, there are no variations in treatment timing between units, which mitigates
the concern that our point estimates may be contaminated by effects from other time periods (Sun
and Abraham, 2021). Moreover, our control group of Munich ATCs remains never-treated throughout.
Because there is currently no estimator tailored to our empirical setting, we carefully select a control
group, demonstrate parallel trends, and check for anticipation effects.
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Figure 8: This figure plots mean daily PM10 pollution concentrations across all pollution
monitors in Stuttgart and Munich over don’t drive appeal (DDA) event time. The
pretreatment period includes up to ten days before the activation day. The treatment
period includes all DDA days including those when the end of the DDA event has already
been announced.
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that day, Treatedi is a dummy variable for whether the ATC belongs to the treatment

group (e.g. within ten kilometers of the Stuttgart city centroid), γi are ATC fixed effects,

φt date fixed effects, and Xi,t a vector of city-specific weather and pollution controls and

lags. β1 estimates the average percentage difference in traffic levels between treated and

untreated ATCs.

In a subsequent specification, we spatially disaggregate our DDA effect estimates

by interacting the DDAt × Treatedi with counter-specific dummy variables (ATCi) to

estimate counter-specific DDA effects. We then create binary variables for DDA event

time and between event recovery time and interact these with Treatedi to examine

temporal heterogeneity in DDA effectiveness.

5.3.1 Dynamic Treatment Effect Estimation

We create Dj , a set of dummy variables corresponding to event time days over the

duration of each DDA event ranging from ten days before the activation day through

the last DDA day. Calendar days that are not within these windows are removed from

this part of the analysis. We group pretreatment days more than six days before the

issue day (day -6+, j = -6) and posttreatment days on the fifth or later day of a DDA

(day 5+, j = 5).39 Accordingly, we replace the DDAt variable in equation 7 with Dj

and test for DDA effect dynamics over event time by estimating the following regression

equation:

log(yi,t) =
∑

j∈−6,...,0,....,5
βjDi,t−j × Treatedi + γi + φt + ηXi,t + εi,t, (8)

where each βj corresponds to the percent change in traffic between treated and untreated

ATCs on event time day j. Equation 8 include a vector of city-specific weather and

pollution covariates (Xt) to control for differences in same-day weather conditions.

5.3.2 Dynamic Posttreatment Effect Estimation

We similarly employ a set of Dk dummy variables to test for posttreatment effect dy-

namics when the DDA is terminated. This model is described by:

log(yi,t) =
∑

j∈−5,...,0,....,2
βkDi,t−k × Treatedi + γi + φt + ηXi,t + εi,t, (9)

39For our regressions, we consider the day before the issue day (j = −3) as the baseline.
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and replaces Dj in equation 8 with Dk, which is relative to the first posttreatment day

without an alert. We consider an event time window from five or more days before day

the DDA is lifted (day -5+, k=-5) including only treated days to two or more days after

the DDA is no longer in effect (day 2, k=2) and no new DDA has been announced. Two

transition days (day -2 and day -1, k=-2 and k=-1, respectively) when the DDA is still

in effect but it has been announced that it will be lifted precede the first post-DDA day

(day 0, k=0).40

5.3.3 Recovery Time Effect Estimation

As depicted in figure 5, we split DDA events into those with less than a median recovery

time since the preceding DDA (short-recovery: < 9 days) and DDA events with a greater

than median recovery time (long-recovery: ≥ 9 days). For each DDA event, we construct

a window around each DDA activation day that spans up to ten days before the acti-

vation day until the last DDA day.41 We then generate a binary variable, Recoveryl,

corresponding to whether each calendar date is part of a short recovery DDA window

(Recoveryl = 0) or a long recovery DDA window (Recoveryl = 1). Days that are not in a

short or long DDA window are omitted from the analysis. In a triple-difference specifica-

tion, we fully interact the temporal DDA treatment term (DDAt), the Stuttgart versus

Munich treatment group term (Treatedi), and the recovery split term (Recoveryl) as

described by the following equation:

log(yi,t) = β1DDAt + β2Treatedi + β3Recoveryl + β4Recovery1 × Treatedi
+β5Recovery1 ×DDAt + β6Treatedi ×DDAt

+β7Recovery1 × Treatedi ×DDAt + γi + φt + ηXi,t + εi,t.

(10)

All remaining regressors from equation 7 are also included. To test for spatial hetero-

geneity in recovery effects, we also separately estimate equation 10 for i) city center

ATCs within five kilometers from the Stuttgart centroid and ii) periphery ATCs located

between five kilometers and ten kilometers from the Stuttgart centroid.42

40The day before the issue day (j = −3) is the baseline in our regressions.
41Preceding DDAs take precedence, so the pretreatment period is smaller for DDAs with shorter recovery

periods. Ultimately, DDA event windows include for long recovery DDAs a total of 277 calendar days
and for short recovery DDAs 226 calendar days.

42In both regressions, we consider all Munich ATCs as the control group because only two Munich ATCs
are within five kilometers of the city center.
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6 Results

6.1 Overall DDA Effect

Table 3: OLS and DiD Regression Results: Overall DDA Effect

(1) (2) (3) (4) (5) (6)
OLS OLS OLS OLS DiD DiD
b/se b/se b/se b/se b/se b/se

DDA Active (=1) 0.0100∗∗∗ -0.0033 0.0054∗∗ -0.0056∗ 0.0094 -0.0081
(0.0027) (0.0034) (0.0023) (0.0030) (0.0074) (0.0060)

Controls Yes Yes Yes Yes Yes Yes
Lags Yes Yes Yes Yes Yes Yes
All Days Yes No Yes No Yes No
Time FE YM YM YMxATC YMxATC Date Date
Unit FE ATC ATC ATC ATC ATC ATC
# ATCs 56 56 56 56 76 76
Observations 27,252 12,362 27,243 12,340 38,818 17,342

Note: Dependent variable is logged vehicles per counter-day. Controls include contemporaneous weather
and pollution variables. Lags are two days of lagged weather and pollution covariates. Regressions
either include all 733 PM season days or 331 non-holiday weekdays excluding DDA transition days. Unit
fixed effects are always at the automatic traffic counter level. Time fixed effects are either year-month
(“YM”), year-month by ATC (“YMxATC”), or calendar date. Standard errors clustered on counter in
parentheses. *=p<0.1, **=p<0.05, ***=p<0.01.

Our regression results show that the overall DDA effect is of small to negligible

magnitude across a variety of model specifications. Table 3 displays DDA effect point

estimates for different specifications of three different regression models: 1) OLS with

year-month and counter fixed effects, 2) OLS with a full interaction of year-month and

counter fixed effects, and 3) a TWFE DiD specification with calendar date and counter

fixed effects that uses Munich ATCs as a never-treated control group. For each model,

we display results for the full sample of 733 days and then restrict the sample to 331

normal, non-holiday weekdays excluding DDA termination transition days.

Across all models, DDAs affect Stuttgart traffic levels by -0.56% to +1.00% and some

specifications estimate a statistically significant overall effect at odds with DDA goals.

In column 4, our preferred specification within OLS, a model that includes contempora-

neous and two days of lagged weather and pollution controls, counter-level fixed effects,

year-month fixed effects, and counter-year-month fixed effects and omits weekends, hol-

idays, and DDA termination transition days, estimates that the DDA leads to a traffic

decrease of about 0.56% on DDA days, or about 102 fewer vehicles per counter-day.
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This estimate is statistically significant at only the 10% significance level. Back-of-the-

envelope calculations equate this DDA effect with a net decrease of about 2,139 motorists

in Stuttgart on DDA days.43 Our main causal estimate in column 6 is a DiD model that

uses Munich ATCs as an untreated control group, includes date and counter fixed ef-

fects, and excludes weekends, holidays, and DDA termination transition days. Like our

preferred specification within OLS, the coefficient of interest corresponds to a decrease

of negligible magnitude (0.8% decrease) but this effect is statistically insignificant.

In no specification do we estimate a statistically significant overall traffic reduction

stronger than 0.6%. The moderate DDA effect in our main DiD specification and the

mixed effects across all specifications suggest that the DDA fails to substantially re-

duce overall traffic levels in Stuttgart. In the next steps of our analysis, we explore

whether these aggregate DDA effect estimates mask differences in DDA effectiveness

across geographic space and time.

6.2 Spatially Disaggregated DDA Effects

We spatially disaggregate our main DiD specification by including counter-specific in-

teraction terms regression equation 7 to estimate the daily DDA effect at each ATC

location. To explore spatial heterogeneity in DDA effectiveness, we group the 56 coun-

ters relative to distance from the Stuttgart center into: i) 19 center locations within five

kilometers and ii) 37 periphery sites between five kilometers and ten kilometers. Fig-

ure 9 plots individual counter-level DDA effect estimates and group means and median

point estimates. With four exceptions, counter-level estimates range from -10% to +10%

across all three counter groups, suggesting that local traffic may indeed change substan-

tially on DDA days. Our counter-level estimates show traffic differs statistically at a

majority of counters on DDA days. Group mean effects are positive and very similar,

but considering that the median center group point estimate is below zero, the DDA

may be marginally more effective at reducing city center traffic than traffic at the city’s

periphery. Moreover, two disproportionately large positive outliers appear to drive the

center group mean up. At distances closest to the city center, point estimates seem to

reliably be smaller and more often negative. Between five kilometers and ten kilometers,

a larger share of ATCs see traffic increases on DDA days, reflected in the positive group

median in the periphery counter group.

Figure 13 in appendix D maps the coefficients plotted in figure 9 from our main DiD

specification. Again, visual inspection suggests that ATCs located closest to the city

43This assumes 382,000 motorists on an average work day.

31



Figure 9: The figure plots counter-level don’t drive appeal (DDA) effect point estimates
from our main DiD regression model. Stuttgart counters are split into two groups relative
to their distance from the city center: i) center counters located within five kilometers
and ii) periphery counters located between five kilometers and ten kilometers. For each
group, we plot the group mean and median DDA effect point estimate at the group’s
distance midpoint.
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center are most likely to experience statistically significant traffic reductions on DDA

days, while positive DDA effect estimates in the center counter group are primarily

located on major roads further from the immediate center. In the periphery counter

group, a large share of ATCs are located at the city’s northern periphery and suggest

that traffic uniformly increases along the northern periphery, while similar results appear

to hold at the southern periphery. While our analysis lacks sufficient data on traffic flows

at the southwestern and northeastern periphery, we do not have any reason to believe

that trends there would differ significantly from the periphery effects we observe at other

locations.

These spatially disaggregated results indicate that the DDA policy may heteroge-

neously affect traffic with respect to distance to the city center. While our analysis does

not enable us to pinpoint a mechanism underlying this effect, we believe two factors may

play an important role. First, commuters and policy-makers may see reducing traffic

levels at the city center, where the AQA trigger monitor is located, as the DDA pro-

gram’s ultimate goal and consider traffic reductions at other locations within the city’s

administrative boundary as secondary. Second, car commuters who want to adhere to

the DDA may respond to this spatial differentiation by minimizing their commuting

time with alternative transportation modes. For example, they may drive their cars up

to the city’s periphery or even slightly within the official boundary, park their vehicles

there, take advantage of public transit subsidies, and switch to public transit for the

remainder of their commute.

6.3 DDA Effect Dynamics

6.3.1 Treatment Effect Dynamics

A plausible mental model of the effects of a DDA on driving decisions hypothesizes

possible dynamic effects (see section 3). To explore these, we interact DDA event time

terms with the DDA treatment variable in equation (6) to estimate daily DDA effects

over DDA event duration. Figure 10 displays DDA effect point estimates for each day

of a DDA. Once the DDA takes effect, we find that overall Stuttgart traffic levels drop

by over 2% on the first DDA day (event time: 0) and by over 3% on the second and

third DDA day (event time: 1 to 2) relative to the counterfactual. We can statistically

rule out that the DDA has no impact for each of the first three DDA days at the 95%

significance level. On the fourth DDA day and beyond (event time: 3+), the DDA

effect drops in magnitude while the fourth and fifth DDA day (event time: 3-4) remain

statistically different from zero. DDA effect estimates throughout the treatment period
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are all in line with the DDA program’s intended reduction of traffic volumes. However,

the point estimate for the sixth day and beyond (event time: 5+) is relatively large

in magnitude, has larger confidence intervals, and is statistically insignificant. Larger

variation in program effectiveness during extended DDAs might be driving this, but our

small sample of days at the tail end of longer DDAs prevents us from analyzing this

more carefully.

Figure 10: Dependent variable is logged vehicles per counter-day. Regressions include
counter and calendar date fixed effects and local weather and pollution controls. Only
days with normal weekday traffic are included. Don’t drive appeal (DDA) days when
the DDA event end date has already been announced and first two days following the
event end date are excluded. Treated group includes 56 counters within ten kilometers
from Stuttgart city centroid. Control group includes 20 counters located within ten
kilometers from Munich city centroid. Standard errors are clustered on counter and 95%
confidence intervals are depicted.

We also note that pretreatment coefficients (days j=-6 to j=-1) do not differ signifi-

cantly from zero, suggesting that average traffic levels in Stuttgart and Munich develop

in parallel on days before DDAs are called. Importantly, our point estimates do not

provide any evidence of anticipatory effects, even on issue or bridge days when motorists

have been informed of the upcoming DDA but have yet not been asked to reduce driv-

ing. These results are largely in line with hypothesis 1 of our theoretical framework and
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demonstrate that DDAs are most effective immediately after being activated.

6.3.2 Posttreatment Effect Dynamics

Figure 11: Dependent variable is logged vehicles per counter-day. Regressions include
counter and date fixed effects and local weather and pollution controls. Treated group
includes 19 center counters within five kilometers of city center and 37 periphery counters
five to ten kilometers from Stuttgart city centroid. Control group includes 20 counters
located within ten kilometers of the Munich city centroid. Standard errors are clustered
on counter and 95% confidence intervals are depicted.

We also examine how DDA effect estimates change when DDA events are terminated.

Figure 11 shows posttreatment effect estimates. 44 Starting on the third day before the

DDA ends, traffic levels drop by over 1% relative to a baseline of two or more days after

the DDA is lifted. This effect remains statistically significant for the last two DDA days,

44In this post-DDA analysis, we estimate a DDA effect during the treated period (k=-5+ to k=0) of
between -0.5% and -1.75%. While the signs on the DDA treatment effect estimates align with the
direction of our results from figure 10, the magnitude of our estimates differs because we look at
treatment days relative to the end of the DDA rather than the beginning. In other words, we count
backward from the event time day that the DDA is terminated. In the posttreatment analysis a DDA
treatment day three days before the DDA is lifted (k=-3) could have originally been on one of many
different DDA days relative to the DDA activation day depending on how long the DDA lasted. For
example, it could have been on first day of a three day DDA or on the seventh day of a ten day DDA.
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including the day when authorities have already announced a DDA end date (always

two days before the DDA is actually lifted). Once the DDA is no longer in effect and

DDA messaging subsides, traffic levels return to baseline levels and the DDA effect does

not differ statistically from zero. These results affirm our prediction from hypothesis 2,

which postulates that DDAs are effective when commuters can expect when the DDA

will be lifted. On the first posttreatment day, we can rule out changes in traffic above 1%

in magnitude at the 95% significance level, while the higher point estimate and wider

confidence interval on the second posttreatment day shows that traffic may rebound

after the DDA is lifted, providing some suggestive evidence in favor of hypothesis 4.

6.3.3 Recovery Time Effects

Figure 12: This figure plots don’t drive appeal (DDA) effect point estimates by recovery
time since the previous DDA event and ATC location. DDA event windows include
a total of 277 calendar days for long recovery DDAs and 226 calendar days for short
recovery days. Table 8 in appendix C displays corresponding DiD regression estimates.

Finally, figure 12 plots point estimates highlighting differences in DDA effectiveness

by between-event recovery time and counter group location.45 Looking at all ATCs,

DDAs reduce traffic in Stuttgart by a statistically significant 1.6% after a long recovery

45Table 8 in appendix C shows regression estimates.
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period of at least nine days, but do not meaningfully impact traffic levels after a short

recovery DDA. In column 1 of table 8 in appendix C, the point estimate on the linear

combination of short-recovery DDA terms corresponds to a 0.75% increase in traffic

during short-recovery DDAs. We then separately estimate equation 10 for city center

and periphery counters. Of the four disaggregated estimates, the DDA effect is only

statistically significant for Stuttgart ATCs at the city center after a longer than median

recovery time. During DDAs following a shorter than median recovery period, the

estimated DDA effect is between +1.1% and +0.2% and statistically insignificant at

the 10% significance level for ATCs at both the city periphery and center respectively,

providing empirical evidence for hypothesis 3 that an insufficiently long recovery period

may hamper overall DDA effectiveness. While the DDA effect remains statistically

insignificant and of negligible magnitude (-0.03%) for periphery counters during DDAs

following longer recovery periods, the DDA effect increases to over a 4.6% reduction at

the city center following a long recovery period and is statistically significant at the 5%

level.

These dynamic patterns discussed in this section capture our main theoretical hy-

potheses from section 3. In figure 10, we show that the DDA leads to traffic reductions

that are strongest at the beginning of DDA events and subside over the DDA’s duration,

as hypothesized social norm effects and other dynamic factors kick in. We show in figure

12 and highlight in our spatially disaggregated analysis that the DDA is most effective in

reducing traffic at the city center, in particular following longer between-event recovery

periods, confirming our hypothesis that DDA responsiveness is sensitive to recovery time.

Finally, our results in figure 11 point to suggestive evidence that individuals trade-off

voluntary pollution reductions during the treatment period for pollution increases (i.e.

additional car trips) in the posttreatment period.

7 Conclusion

Taken together, our theoretical framework and the results of our empirical test suggest

that policy-makers should carefully consider dynamic factors when designing DDA pro-

grams and other policies appealing for voluntary pollution mitigation. Our results show

that, on average, DDAs decrease traffic on DDA days by less than 1% in line with the

program’s overall objective. To put this into perspective, this is less than the difference

between traffic levels in Stuttgart on an average Monday versus an average Tuesday.46

46Monday counter-day traffic averages 18,889 vehicles per day and Tuesday 19,232. The difference in
mean levels is 1.8%.
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We highlight several important caveats to this result. First, the DDA is most effective

immediately after it is activated, and we show that it leads to an average reduction of

about 3% on the first three DDA days. Second, the DDA is only effective on aggregate

following a lengthy between-event recovery period at the city’s center. We find that the

prediction that DDAs reduce driving on DDA days can be rationalized by appealing to

a behaviorally informed model of car owners, and this passes an empirical test.

Our estimated overall DDA effect of about a 1% traffic reduction on DDA days is

situated between no effect results from other DDA studies (Noonan, 2014; Sexton, 2012;

Cummings and Walker, 2000) and Cutter and Neidell (2009)’s finding of 2%-3% traffic

reductions on Spare the Air days in San Francisco, USA. Our result contrasts with the

finding that Salt Lake City, USA’s particulate matter alert inadvertently increases traffic

in the city by 3%-4% (Tribby et al., 2013). On aggregate, we believe these modest traffic

reductions are not substantial enough to meaningfully impact pollution levels in the

policy’s target area. However, an analysis of DDA pollution impacts is beyond the scope

of this paper. Our analysis also emphasizes that heterogeneity in spatial and temporal

effectiveness may be obscured by overall DDA effect estimates.

These findings may generally caution policy-makers interested in combining AQAs

with DDAs. This policy bundle has demonstrated mixed effectiveness for achieving driv-

ing reductions in other settings, and our study does not provide resounding evidence that

this type of policy is persistently effective even when implemented in an ideal setting that

has widespread environmental preferences and a dense public transit network. Our anal-

ysis is limited to analyzing the impacts of the DDA policy on traffic flows and does not

evaluate it relative to other presumably important policy-making factors such as its im-

plementation cost, its impact on residents’ perceived quality of life, or its effect on actual

pollution exposure. For example, we find suggestive evidence in our analysis that DDAs

may displace some traffic to the city periphery. It is not clear in Stuttgart’s case whether

modest traffic decreases at the city center and traffic increases at the periphery effec-

tively reduce air pollution exposure in the target population. However, policy-makers

might value traffic and emissions reductions at the city center, where population density

is often highest, more than moderate increases at the periphery. Pollution monitoring

systems which provide more spatially resolved pollution measurements would enable a

more holistic consideration of spatially-heterogeneous DDA pollution impacts.

The external validity of our results may be limited by Stuttgart’s self-selection into

the program. Stuttgart authorities designed and implemented the DDA program in

response to the city’s prolonged non-compliance with EU air quality standards with the

ostensible belief that the DDA would lead its motorists to voluntary drive less to reduce
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pollution peaks.47 In an ideal experimental setting, we would compare Stuttgart to a

city that fully mimics Stuttgart, but authorities in the comparison city do not broadcast

a DDA for reasons unrelated to its impact. Given the empirical nature of our analysis,

such a perfect counterfactual does not exist – we don’t know why Munich never chose

to implement a DDA program, but it is likely not random. So, we urge caution when

considering whether observed effects will transfer to different cities.

Finally, several other factors which we cannot observe could plausibly affect our esti-

mates. First, we cannot account for same-day traffic shocks at the counter level. While

we do not have information about traffic events which may heterogeneously affect car

trip demand across counters (e.g. traffic jams, accidents, large events, etc.), barring re-

markable changes in traffic conditions on DDA days or considerable spatial displacement

effects, we think it is unlikely that same-day traffic shocks differ systematically on treat-

ment days or would otherwise significantly bias our DDA effect estimates. Furthermore,

we expect temporary traffic displacement to average out across nearby counters. Second,

our analysis is limited to analyzing aggregate traffic impacts and provides little evidence

of the individual level mechanisms underlying policy effectiveness. We are unable to

observe individual motorists’ driving decisions, expectations about DDA effectiveness,

or their DDA information exposure (e.g. salience of DDA messaging, consumption of

AQA-adjacent programming, etc.). For example, motorists may make their transporta-

tion choices based on some combination of weather forecasts, congestion expectations,

and beliefs about the DDA, all of which we do not observe. Future research examining

individual level responses to DDAs with individual level commuting data and individual

level DDA information exposure could provide important insights into which population

subgroups are responsive to appeals for voluntary pollution mitigation. Such analyses

might also be able to shed light on socioeconomic dimensions of DDA effectiveness and,

with an eye to an equitable mobility transition, inform policy-makers about effective

targeting approaches and the distributional impacts of their policies.

47To our knowledge, Stuttgart is the only city in Germany to have implemented a large-scale program
appealing for voluntary driving reductions to temporarily reduce pollution.
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A Replication Package

The data and Stata code used to conduct this analysis is available online at https:

//doi.org/10.11588/data/TO3AAL.
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B Additional Tables

Table 4: DDA Activation: Pretreatment and Treatment Days by Day-of-the-Week

Monday Tuesday Wednesday Thursday Friday Saturday Sunday Total

Pretreatment
-6+ 17 17 14 15 15 17 18 113
-5 4 4 9 4 4 3 2 30
-4 2 4 4 9 4 7 3 33
-3 3 2 4 4 9 5 7 34
Issue 8 5 2 4 6 10 7 42
Bridge 7 8 5 2 4 6 11 43
Total 41 40 38 38 42 48 48 295

Treatment
1 12 7 8 5 2 4 6 44
2 6 12 7 8 5 2 4 44
3 4 2 9 7 7 3 2 34
4 0 3 2 9 6 5 3 28
5 2 0 3 2 9 4 4 24
6 3 2 0 2 2 6 4 19
7 3 2 1 0 2 1 6 15
8 6 2 1 1 0 1 0 11
9 0 5 2 1 1 0 0 9
10 0 0 3 2 1 0 0 6
11 0 0 0 3 1 1 0 5
12 0 0 0 0 2 0 1 3
13 1 0 0 0 0 2 0 3
14 0 1 0 0 0 0 1 2
15 1 0 1 0 0 0 0 2
16 0 0 0 1 0 0 0 1
Total 38 36 37 41 38 29 31 250
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Table 5: DDA Termination: Treatment and Posttreatment Days by Day-of-the-Week

Monday Tuesday Wednesday Thursday Friday Saturday Sunday Total

Treatment
-5+ 18 15 16 16 12 11 12 100
-4 3 9 4 3 4 4 1 28
-3 1 4 11 4 5 5 4 34
-2 7 1 5 13 4 5 9 44
-1 9 7 1 5 13 4 5 44
Total 38 36 37 41 38 29 31 250

Posttreatment
0 4 7 7 1 3 12 2 36
1 2 4 7 7 1 3 11 35
2+ 19 17 16 22 26 15 15 130
Total 25 28 30 30 30 30 28 201
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C Additional Regression Results

Table 6: OLS and DiD Regression Results: Overall DDA Effect (Controls, No Lags)

(1) (2) (3) (4) (5) (6)
OLS OLS OLS OLS DiD DiD
b/se b/se b/se b/se b/se b/se

DDA Active (=1) 0.0130∗∗∗ -0.0059∗ 0.0076∗∗∗ -0.0074∗∗ 0.0114 -0.0132∗∗

(0.0027) (0.0033) (0.0026) (0.0031) (0.0076) (0.0060)

Controls Yes Yes Yes Yes Yes Yes
Lags No No No No No No
All Days Yes No Yes No Yes No
Time FE YM YM YMxATC YMxATC Date Date
Unit FE ATC ATC ATC ATC ATC ATC
# ATCs 56 56 56 56 76 76
Observations 27,643 12,568 27,634 12,546 39,373 17,622

Note: Dependent variable is logged vehicles per counter-day. Controls include contemporaneous weather
and pollution variables. Lags are two days of lagged weather and pollution covariates. Regressions
either include all 733 PM season days or 331 non-holiday weekdays excluding DDA transition days. Unit
fixed effects are always at the automatic traffic counter level. Time fixed effects are either year-month
(“YM”), year-month by ATC (“YMxATC”), or calendar date. Standard errors clustered on counter in
parentheses. *=p<0.1, **=p<0.05, ***=p<0.01.
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Table 7: OLS and DiD Regression Results: Overall DDA Effect (No Controls, No Lags)

(1) (2) (3) (4) (5) (6)
OLS OLS OLS OLS DiD DiD
b/se b/se b/se b/se b/se b/se

DDA Active (=1) 0.0721∗∗∗ 0.0055 0.0679∗∗∗ 0.0030 0.0118 -0.0039
(0.0042) (0.0041) (0.0035) (0.0024) (0.0084) (0.0068)

Controls No No No No No No
Lags No No No No No No
All Days Yes No Yes No Yes No
Time FE YM YM YMxATC YMxATC Date Date
Unit FE ATC ATC ATC ATC ATC ATC
# ATCs 56 56 56 56 76 76
Observations 27,673 12,568 27,664 12,546 39,403 17,622

Note: Dependent variable is logged vehicles per counter-day. Controls include contemporaneous weather
and pollution variables. Lags are two days of lagged weather and pollution covariates. Regressions
either include all 733 PM season days or 331 non-holiday weekdays excluding DDA transition days. Unit
fixed effects are always at the automatic traffic counter level. Time fixed effects are either year-month
(“YM”), year-month by ATC (“YMxATC”), or calendar date. Standard errors clustered on counter in
parentheses. *=p<0.1, **=p<0.05, ***=p<0.01.
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Table 8: DiD Regression Results: Recovery Time and Location DDA Effect

(1) (2) (3)
All Center Periphery
DiD DiD DiD

Main coefficients
DDA=1 × Treated=1 0.0075 0.0016 0.0112

(0.0065) (0.0105) (0.0075)
Recovery=1 × Treated=1 -0.0024 -0.0215 0.0068

(0.0089) (0.0218) (0.0071)
DDA=1 × Recovery=1 × Treated=1 -0.0209∗∗∗ -0.0257∗∗ -0.0184∗∗

(0.0066) (0.0113) (0.0078)

Sum of coefficients
Short Recovery DDA 0.0075 0.0016 0.0112

(0.0065) (0.0105) (0.0075)
Long Recovery DDA -0.0158∗ -0.0456∗∗ -0.0003

(0.0088) (0.0206) (0.0067)

Controls Yes Yes Yes
Lags Yes Yes Yes
Days 503 503 503
DDA Days 227 227 227
Short-Window DDA Days 148 148 148
Long-Window DDA Days 79 79 79
Time FE Date Date Date
Unit FE ATC ATC ATC
# ATCs 75 39 56
Observations 26,832 13,978 20,836

Note: Dependent variable is logged vehicles per counter-day. Controls include contem-
poraneous weather and pollution variables. Lags are two days of lagged weather and
pollution covariates. Regressions include PM season days within the specified window of
each DDA activation day. Unit fixed effects are always at the automatic traffic counter
level. Time fixed effects are calendar date. Standard errors clustered on counter in
parentheses. *=p<0.1, **=p<0.05, ***=p<0.01.
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D Additional Graphics

Figure 13: This figure maps counter-level don’t drive appeal (DDA) effect point estimates
at ATC locations from our main DiD regression model. Marker color corresponds to es-
timated effect sizes. Counter-level estimates that are statistically significant have a black
marker border, while statistically insignificant markers have a grey border. Map includes
Stuttgart administrative boundaries, main roads, and buffer zones in five kilometer in-
tervals around the Stuttgart city centroid as in figure 4. Data Sources: OpenStreetMap,
IVLZ, BaSt, BKG, and own calculations.
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