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Abstract

The business cycle is driven by expectations—some justified, some not—as
documented by a host of studies. What is less clear are the conditions that make
the economy susceptible to “sentiment shocks.” In this paper, we document
that uncertainty, as measured by forecaster disagreement, is essential. At times
when disagreement is low, sentiment shocks hardly matter for economic activity
but are fully absorbed by prices. If, instead, disagreement is high, they move
activity with little impact on prices. We obtain these results based on time-
series data and a theoretical account based on a New Keynesian model with
dispersed information.
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1. Introduction

Economic fluctuations are, to no small extent, caused by non-fundamental shocks.
These shocks come with various labels, such as noise, animal spirits, or sentiment
shocks, yet the underlying notion is similar. It traces back to Pigou (1927) and Keynes
(1936) and has been substantiated more recently in quantitative work (for instance,
Blanchard, L’Huillier, and Lorenzoni, 2013; Angeletos and La’O, 2013; Lagerborg,
Pappa, and Ravn, 2023). Ultimately, such shocks matter because economic actions
are based on expectations, which, in turn, are prone to errors or coordination failures
and may even become self-fulfilling. In what follows, we refer to this class of shocks
as “sentiment shocks”. The conditions under which they materialize are likely to
affect how they unfold: if there is significant uncertainty—measured by forecaster
disagreement—economic activity is potentially more susceptible than when there is
little uncertainty about the state of the economy.

In this paper, we thus ask how such disagreement shapes the economic impact of
sentiment shocks. Our identification strategy follows Enders, Kleemann, and Miiller
(2021) and is centered around the nowcast error for output growth. Sentiment shocks
induce a negative co-movement between the nowcast error and output: This sets them
apart from fundamental shocks and rationalizes the sign restrictions we impose on a
VAR model that we estimate on U.S. time-series data. The key contribution of this
paper is to allow the effect of sentiment shocks to vary with uncertainty, measured by
forecaster disagreement. We find that uncertainty is indeed crucial for how sentiment
shocks unfold: in normal times, a sentiment shock has no effect on economic activity
and is fully absorbed by rising prices. In contrast, during periods of high uncertainty,
economic activity responds strongly while prices remain unchanged.

We rationalize the evidence in a stylized noisy information model a la Lorenzoni
(2009). In the model, aggregate technology is not directly observed and forecasts
are based on private information and public signals. If aggregate technology becomes
more volatile and, hence, uncertain, agents base their expectations more on the signals
instead of relying on priors. As a result, the weight on noise in the public signal also
increases, resulting in more dispersed expectations—effectively, more “dancing in the
dark.” In this situation, the model predicts—consistent with the evidence—that
economic activity reacts more strongly to random fluctuations in the signal, which

operationalizes the notion of a sentiment shock.



More in detail, our empirical analysis is based on a two-step approach. In the first
step, we identify sentiment shocks using a bivariate VAR model that incorporates
quarterly observations of the nowcast error and output over the 50-year period from
1969 to 2019. The nowcast error is defined as the difference between actual output
growth and the median estimate reported in the Survey of Professional Forecasters
(SPF) in real time. As a measure of real-time misperceptions, it provides us—ex
post—with an informational advantage that is key to identifying sentiment shocks
(Blanchard, L’Huillier, and Lorenzoni, 2013).

Importantly, the nowcast errors are only due to sentiment shocks; they may just as
well reflect fundamental shocks. Still, we use the nowcast error to identify sentiment
shocks, which are distinctive in causing a negative co-movement between output and
the nowcast error. For example, an expansionary shock due to an unexpected change
in total factor productivity generates a positive nowcast error: output expands and

! In contrast, a

turns out higher than expected, a positive nowcast error obtains.
favorable sentiment shock leads perceived growth to overshoot actual growth (result-
ing in a negative nowcast error) while simultaneously providing a boost to economic
activity. Building on this insight, we use sign restrictions to identify sentiment shocks
(Enders, Kleemann, and Miiller, 2021; Chahrour, Nimark, and Pitschner, 2021).

We move beyond existing work on the effects of sentiment shocks by employing
a smooth-transition VAR model, which allows the effects of shocks to vary with the
degree of disagreement among forecasters—measured by the cross-sectional interquar-
tile range of individual output growth nowcasts in the SPF. Based on the empirical
cumulative density function within our sample, we define two polar regimes of high
and low disagreement, allowing for a smooth transition between them. In the sec-
ond step, we use the sentiment shocks identified in the VAR to estimate their effects
using state-dependent local projections. This approach allows us to conveniently ex-
pand the set of macroeconomic indicators while consistently accounting for regime
dependence.

The central result of our analysis is that the effect of sentiment shocks differs
depending on the level of disagreement among forecasters. When disagreement is

high, a sentiment shock leads to a significant increase in output that persists for about

I This feature is not specific to productivity shocks but is a general property of nonsentiment, or
fundamental shocks. Furthermore, the effects are symmetric: A generic contractionary shock
induces a decline in output and, at the same time, a negative nowcast error if the shock is not
fully observed in real time. The assumption of symmetry extends to sentiment shocks as well.



four to five years. At the same time, we find that sentiment shocks have virtually no
effect on prices, provided that disagreement is high. In terms of magnitude, we find
a sizable effect: a sentiment shock that implies an overprediction of current output
growth by one percentage point increases output by two percent after two years. In
contrast, when uncertainty is low, an expansionary sentiment shock has little impact
on output. Instead, it is absorbed by rising prices, which increase by approximately
1.5 percent after two to three years before gradually returning to their pre-shock level.

We find that these outcomes are robust to various modifications of the analysis
and detect similar patterns across a range of macroeconomic indicators. Consumption
and investment increase in response to sentiment shocks when disagreement is high
but remain unresponsive or even decline when disagreement is low. We also find that
monetary policy reacts to a sentiment shock by raising the federal funds rate in the
low-disagreement regime, which helps explain the (mildly) recessionary effect in this
case.

The model we put forward to rationalize the evidence is a version of the dispersed
information model of Lorenzoni (2009). A key feature of the model is that house-
holds and firms do not observe aggregate productivity at the time of decision making.
Instead, they rely on expectations, or more specifically, nowcasts, which they form
based on a public signal and private information, extracted, in turn, either from their
own productivity (firms) or from observed prices (households). We simplify the orig-
inal model by assuming predetermined (rather than staggered) prices and solve it in
closed form: We can show that the response to sentiment shocks varies with the level
of disagreement. Intuitively, the optimal weights placed on signals depend on the
perceived uncertainty regarding aggregate technology. When the volatility of aggre-
gate productivity is (perceived to be) high, expectations become more responsive to
signals and, thus, more sensitive to the noise in the public signal, which corresponds
to aggregate sentiment shocks. Specifically, firms overestimate aggregate productivity
and, therefore, expect competitors’ prices to be lower following an expansionary sen-
timent shock, leading them to reduce their own prices. Under a mild condition, this
boosts output while markups decline. At the same time, households expect better
fundamentals and increase consumption accordingly.

The paper is organized as follows. The remainder of the introduction places the
paper in the context of the literature, clarifying its contribution. The next section

uses a stylized setup to fix ideas and to set the stage for the empirical analysis, for



which we develop a framework in Section 3. Section 4 reports the empirical results.
Section 5 rationalizes the findings using the dispersed information model. The final

section concludes.

Related Literature. Our paper relates to several strands of the literature. First,
the existing literature has examined how uncertainty affects the transmission of
shocks, with particular emphasis on the effects of fiscal and monetary policy. A robust
finding is that policy measures tend to be less effective when uncertainty is high, typ-
ically measured using conventional proxies of macroeconomic or financial uncertainty
(Aastveit, Natvik, and Sola, 2017; Castelnuovo and Pellegrino, 2018; Hauzenberger,
Pfarrhofer, and Stelzer, 2021). Uncertainty, and the state of the economy more
broadly, also matter for the transmission of uncertainty and TFP shocks (Lhuissier
and Tripier, 2021; Gambetti et al., 2023; Antonova, Matvieiev, and Poilly, 2024).
Like us, Ricco, Callegari, and Cimadomo (2016) and Falck, Hoffmann, and Hirtgen
(2021) highlight state-dependent effects based on disagreement. However, their focus
is on fiscal and monetary policy, and they find that lower degrees of disagreement
give rise to stronger effects, possibly due to more effective policy communication. In
contrast, we investigate the conditions under which non-fundamental shocks unfold.
Our contribution is distinctive in that we provide not only new evidence but also a
theoretical account.

More importantly, our focus is distinct as we investigate how disagreement shapes
the transmission of sentiment shocks. This is of particular relevance in light of a sec-
ond strand of the literature that tries to gauge the importance of news and “noise”
for business cycle fluctuations, with partly conflicting results (Beaudry and Portier,
2006; Beaudry, Nam, and Wang, 2011; Schmitt-Grohé and Uribe, 2012; Barsky and
Sims, 2011; Barsky, Basu, and Lee, 2015; Benhima and Poilly, 2021). Against this
background, it is important to condition the effect of sentiment shocks—broadly
understood—on the extent of disagreement since it is indicative of the extent of
information frictions which, in turn, give rise to sentiment shocks in the first place.

In addition, the concept of news shocks and their link to noise shocks is further
clarified by Chahrour and Jurado (2018). We also relate to the paper by Levchenko
and Pandalai-Nayar (2020) who identify a “sentiment” shock, which is orthogonal
to surprise and news technology shocks. Similarly, we highlight the importance of

sentiment shocks in driving the business cycle.



Finally, our work connects to the literature on how public signals shape coordina-
tion and welfare. Seminal work by Morris and Shin (2002) and Angeletos and Pavan
(2007) show how public information acts as a coordination device in environments
with strategic complementarities. Follow-up work in New-Keynesian settings yields
mixed welfare implications (Hellwig, 2005; Walsh, 2007; Ehrmann and Fratzscher,
2007; Cornand and Heinemann, 2008), and Angeletos, lovino, and La’o (2016) stress
that the answer depends on the source of aggregate fluctuations. We contribute by

providing the first empirical test of when coordination motives actually bite.

2. Fixing ideas

To set the stage for the empirical analysis, we fix ideas and sketch why, in theory,
uncertainty matters for how sentiment shocks unfold. Specifically, we zoom in on the
signal-extraction problem, which is central to the model in Section 5 below. Firm
productivity features both an aggregate and an idiosyncratic component. In real time,
firms do not observe aggregate technology, e ~ N (0, 0?), directly. Instead, each firm
receives a private signal a; = € +7;, which contains idiosyncratic noise 7; ~ N(0, ag).
By construction, idiosyncratic noise averages out in the aggregate. Firms also observe
a public signal, s = € + e, which is noisy as well, with e ~ N(0,02). The disturbance
e represents the noise shock, the effects of which we seek to identify below.

In this context, the optimal estimate of aggregate technology is given by
E;lel|s, a;) = ps + da; = (p + §)e + pe + on;,

with
2
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Hence, the impact of both signals on expectations increases in ¢2: if uncertainty is

high, firms pay more attention to the signals instead of relying on their prior (which

is zero in this case). This has two implications. First, the dispersion of expectations,

given by 520?] , increases. Second, the impact of the shock on expectations also rises,
via a higher p.

This matters for economic activity because expectations feed back into the de-

cisions of households and firms. Specifically, as we show formally in Section 5, the



increase in uncertainty raises expectation dispersion and amplifies the effect of senti-

ment shocks on economic activity.?

3. Empirical framework

This section presents our empirical framework, explaining how we identify sentiment
shocks in a non-linear setting and how we estimate state-dependent local projections.
We allow the sentiment shocks to depend on the level of disagreement. For that, we
define two polar regimes of disagreement and discuss the regime allocation based on

the disagreement series. Before doing that, we introduce the data.

3.1 Data

We use quarterly data for the US, ranging from 1969Q4 to 2019Q4 for a set of
macroeconomic quantities: output, nowcast errors of output, the dispersion of now-
cast errors, consumer prices, the federal funds rate, the S&P 500 index, and various
sub-components of output. We use final-release data from the Bureau of Economic
Analysis (BEA) for real gross domestic product to measure output. Nowcast errors of
GDP growth are computed as the difference between BEA’s actual first-release output
growth rate and the equivalent SPF survey nowcast.®> We measure the dispersion of
nowcasts, or disagreement, based on the interquartile range of the participants’ fore-
casts in the SPF for output growth in the current quarter.* The remaining variables
are relatively standard, and we provide further details in Appendix A.1.

2 Note that it does not matter whether this is a real or merely perceived change. In a similar vein,

Gemmi and Mihet (2023) investigate the impact of uncertainty on household expectations about
inflation, distinguishing between uncertainty due to higher volatility of the fundamental or due to
higher volatility of the signals (noise).

For the SPF nowcasts of output, we use the series DRGDP2, which we obtain from the Real-time
Data Research Center of the Philadelphia Fed. This series corresponds to the median nowcast of
the quarterly growth rate of real output, seasonally adjusted at annual rates (real GNP prior to
1992 and real GDP afterwards). Prior to 1981Q3, the SPF asked for nominal GNP only. In this
case, the implied nowcast for real GNP is computed based on the nowcast for the price index of
GNP. We only investigate the median nowcast, as there is a lack of distinct patterns in response
to shocks arising from nowcasts misjudging macroeconomic risk (Boeck and Pfarrhofer, 2025).
As an alternative, we consider the standard deviation across forecasts. We discuss this choice in
the robustness section further below.



3.2 Non-linear identification of sentiment shocks

In terms of identification, we build on Enders, Kleemann, and Miiller (2021) and
the Bayesian variant in Chahrour, Nimark, and Pitschner (2021). However, we move
beyond the linear VAR framework to allow for state-dependent effects. Specifically,
we estimate a bivariate Bayesian smooth-transition vector autoregressive (STVAR)
model, in which we employ the same set of sign restrictions as in Enders, Kleemann,
and Miiller (2021). The 2x1 vector of endogenous variables y, = (ne;, gdp;)’ comprises
the nowcast error of output growth and the actual growth rate of GDP. Then we

assume the following time series process for {y;}/_;:

yr= (e +Anyi1+ ...+ Apyep) X Fzi)

+ (021 + AQlyt—l + ...+ A2pyt—p) X (1 — F(zt—l)) (31)
+Cgt+Cgt2+St€t, Et NN(O,I),
where A, ; are n x n coefficient matrices for regime r € {1,2} and lag j € {1,2,...,p},

the 2 x 1 vectors ¢,1, ¢2, and c3 denote the coefficients corresponding to the intercept,
trend, and quadratic trend. The 2 x 1 vector €; denotes the structural errors, which
are normally distributed with zero mean and unit variance.® Hence, S; denotes the
structural impact matrix, which is time-varying due to its state-dependence. This
implies that the reduced-form errors u; = S;e; follow a Gaussian distribution with
zero mean and the 2 x 2 covariance matrix 3; = S;.S]. To make the state-dependence

explicit, we write
¥ =31F(z-1) + Xo(1 — F(2-1)). (3.2)

This leads to ¥, = S, S/, where S, is the regime-specific structural impact matrix.
We discuss further details on the Bayesian estimation of the STVAR model in
Appendix A.2.

To estimate the state-dependent effects within the STVAR model, we interact the
coefficients with the transition function F'(z;—1) € [0, 1], which reflects the weight of
being in the high-disagreement regime at time ¢ — 1. This specification reflects the
fact that disagreement is not binary; rather, it can vary in intensity over time. In our

estimation, we leverage this continuous variation to assess how the effect of sentiment

5 Without loss of generality, we define the second column of €; to be a sentiment shock, which we
use as an exogenous shock in the local projection (3.4) below.



shocks depends on forecaster disagreement. The concept of a regime is used solely to
define limiting cases for illustrative purposes.

The specification of the transition function involves two steps: the choice of the
indicator and the specification of the mapping of the indicator into weights. First,
we identify the regimes with the level of disagreement about GDP growth nowcasts,
as captured by the variable z,_;.® Second, we specify the transition function on the
basis of the empirical cumulative density function (CDF) in our sample, adopting the

approach of Born, Miiller, and Pfeifer (2020) to our setting.” Formally, we have

T
1
F(z-1) = fZ]l(zj < z-1),
j=1

where T' is the number of observations in our sample, 1 is an indicator function,
and j indexes all observations. The function equals one if disagreement is at the
maximum value within the sample: a situation in which information is extremely
dispersed. Instead, if the function equals zero, disagreement is at its minimum. As
disagreement is continuous, the economy is hardly ever in one of these two polar
regimes. This is captured in the estimation, as each observation is a weighted average

of the dynamics in the two regimes.

Identification is achieved through the same set of sign restrictions in both regimes

(Rubio-Ramirez, Waggoner, and Zha, 2010). Specifically, we assume that

uy© + 4\ g
- , 3.3
uf dp + - A (3:3)

where €7° and €] denote the nonsentiment and sentiment shocks, respectively. For
the nonsentiment shock, we restrict the signs such that there is a positive comovement
between the nowcast error and GDP growth. For the sentiment shock, we impose a
negative comovement. Note that we do this for both regimes, which allows us to back

out €] = exS; Lu,, where e, denotes a unit vector with one in the second row.

6 We postpone the exact details on the construction and discussion of this indicator to Section 3.4.

" In contrast to the literature building on Auerbach and Gorodnichenko (2012), this allows us
to avoid imposing a specific parametric transition function. Studies in this tradition (see also,
for instance, Auerbach and Gorodnichenko, 2013, Caggiano, Castelnuovo, and Groshenny, 2014,
Tenreyro and Thwaites, 2016, or Falck, Hoffmann, and Hiirtgen, 2021) use the logistic function as
the transition function and calibrate rather than estimate the involved smoothness parameter. We
follow their calibration strategy and provide robustness for our baseline results using the logistic
function. We report this robustness check in Figure B2 in the appendix.



3.3 State-dependent local projections

In order to study the transmission of sentiment shocks, we resort to local projections.
In this way, rather than extending our STVAR model, we can flexibly assess the
effects of sentiment shocks on a number of variables of interest. Importantly, to
ensure consistency, we combine the local projections approach of Jorda (2005) with a
smooth regime-switching mechanism to estimate state-dependent impulse responses
that vary with the levels of disagreement between forecasters over time, just as in the
STVAR model.

This results in smooth-transition local projections (STLP). Letting ;. denote
the response of a particular variable at time ¢ + h to a sentiment shock £} at time ¢,

we consider a model that depends on the level of disagreement. It reads:

Alypon — (a,e e+ x;_mf) x (1 - F(zto)

+ (ahH + BHes 4 X{ﬂf) X F(z-1) (3-4)
+ Tipt 4 Tont? + uii)h, ugi)h ~ N(0,07),
where A"y, = y4n — 1—1 denotes cumulative differences and h = 0,..., H the

number of periods after the shock hits the economy. The coefficient of interest is
By, which denotes the causal, state-dependent effect at horizon h to a sentiment
shock, where r € {L, H} refers to the low (L) and high (H) disagreement regimes,
respectively.®

The model specification includes a linear-quadratic trend (71, and 7o), state-
dependent constants (a}), and state-dependent coefficients (7;) for the vector of
control variables X;_;. The n,x1 vector X;_; contains lagged control variables, which
include four lags of the shock series and the dependent variable. For the transition
function F'(z;—1), we use the same specification as before. The regression residual is
denoted by u;,y, and is distributed as Gaussian with zero mean and o7 variance. To
address the issue of autocorrelation in the residuals, we apply the strategy proposed
by Lusompa (2023). In all specifications, we use lags of the endogenous variable in

the regression as controls, which robustifies inference (Montiel-Olea and Plagborg-

8 This model nests a linear specification, in which we suppress the state-dependency. The equation
then reads as follows: A"y, ) = au, + Bref + X[_1yn + 71t + Tont? + uly,, with ul',, ~ N(0,07).
In this case, the sentiment shock €7 is also estimated in a linear VAR setting; for details, we refer
to Enders, Kleemann, and Miiller (2021).



Mpoller, 2021). The specification in long differences shows considerable small sample
gains when the impulse response of interest is estimated using an externally identified
shock (Piger and Stockwell, 2023). We estimate the local projections in a Bayesian
framework, which allows us to impose regularization techniques on the vector of
coefficients corresponding to the control variables (Carvalho, Polson, and Scott, 2010).
We provide further details on the Bayesian estimation of the STLP in Appendix A.3.

For the estimation of impulse responses, the parameter g] (r € {L, H}) provides
a direct causal estimate of the response of the dependent variable to the sentiment
shock €;. We investigate the two polar cases in which the economy is in a high- or

low-disagreement regime today, indexed by z;_;. Formally, we have

aAhyt+h

8829 = ﬁ}% X (1 — F(Zt—1)> —{—B}I;I X F(Zt—l)-

Zt—1

Estimation of Equation (3.4) is done for each horizon and variable separately, re-
sulting in a sequence {f7} | that reflects the impulse response for y, within the
first H periods. An important advantage of this approach is that it does not rule
out potential regime switches after the shock. The state-dependent local projection
framework conditions on being in one of the polar cases before the shock hits but
does not make any additional assumptions about the economy staying in a particular
regime in subsequent periods (see also the discussion in Ramey and Zubairy, 2018).
Rather, the local projection at time ¢ directly provides us with a measure of the
conditional average response of an economy in state z;_; going forward. Gongalves
et al. (2024) clarify that LPs recover the conditional average response, given that the
state is exogenous. In the case of an endogenous state variable, LPs only recover
the conditional marginal response function. We show that disagreement does not
react systematically in our case, which lends credibility to the state variable being
exogenous. Additionally, we fix the ratio d/0, = 1, which is the shock magnitude &
divided by the standard deviation of the shock. If exogeneity of the state indicator
is a problem, the potential bias increases in this ratio, as pointed out by Gongalves
et al. (2024).

3.4 Regime allocation of low- and high-disagreement about growth

Before we move on to present the results, we discuss how we construct the transi-

tion function that provides us with weights for being in a low- or high-disagreement

10



Figure 1: Transition function based on forecaster disagreement.
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Notes: Top left panel: Interquartile range across forecasters in the SPF regarding output growth in the current
quarter, raw series. Top right panel: Interquartile range scaled by the moving average of the standard deviation of
output growth (moving average over 24 quarters). Bottom panel: Transition function with weights for being in the

high disagreement regime based on the scaled interquartile range.

regime. We display our measure of disagreement and the value of the transition func-
tion at each point in time in Figure 1. Forecaster disagreement is measured by the
interquartile distance of forecasters’ forecasts in the SPF regarding output growth in
the current quarter. The raw series is reported in the upper left panel and shows sub-
stantial variation in the dispersion of growth forecasts over time. It appears cyclical,
with increasing disagreement in most, but not all, of the NBER recessions indicated
by the gray areas.

The series, however, is non-stationary. It shows a considerable trend or regime
shift in both the level and volatility. In particular, the average level and volatility
of dispersion are elevated from the beginning of the sample until the mid 1980s.
In our sample, the correlation of the standard deviation of GDP growth and the
disagreement of professional forecasters is as high as 0.7. Against this background, it
seems plausible that a higher variance in GDP growth (and the underlying shocks)

may be at least one of the reasons why the dispersion in professional forecasts tends
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to be higher until the mid 1980s.® Therefore, we scale disagreement using the moving
standard deviation of output growth. We estimate the moving standard deviation on
a moving window of 24 quarters.'?

We show the adjusted series in the upper right panel of Figure 1. The scaling
mutes the large spikes in disagreement in the beginning of the sample but preserves
the general pattern of the variable. The highest level of disagreement in the series is
now associated with the recessions of the early 1990s and 2000s.

The bottom panel of Figure 1 shows the weight of being in the low- or high-
disagreement regime based on the scaled interquartile range. The values of the tran-
sition function are derived using Equation (3.2). We observe that we are hardly
ever in one of the two polar regimes of disagreement. The figure shows substantial
time variation in disagreement, and it is useful to discuss the series and its potential
sources in more detail. High disagreement occurs throughout the sample and during
most of the NBER recessions, with the exception of the Volcker recession. However,
non-recessionary periods are also in the high-disagreement regime.

The literature has pointed towards two main mechanisms why forecasters disagree
and form heterogeneous expectations. Either agents disagree due to differences in
their information signals or due to differences in their priors or models. Patton and
Timmermann (2010) argue that different priors have strong implications for long-
run expectations because private information is only of limited value. Conversely,
agents’ private signals matter more in the short term. When information is more
dispersed across agents, they hence form heterogeneous expectations, resulting in
higher disagreement. For output growth, forecaster disagreement is largest for short

9 Similarly, Falck, Hoffmann, and Hiirtgen (2021) observe historically high levels of disagreement

in inflation expectations. They scale disagreement by the level of expected inflation to control
for periods of relatively high inflation rates. This approach works for inflation but not for output
growth for two reasons. First, output growth is not positively correlated with disagreement (which
is the case for the level of inflation). Second, output growth can become numerically very small
and turns negative quite often as well. Scaling disagreement with such a scaling series results in
a rather messy series with flipping signs, without disagreement changing, and with huge spikes
when the scaling series is close to zero.

10The empirical results are robust to using alternative window sizes reflecting typical business cycle
frequencies of 5-7 years. Using window sizes of 20 quarters (5 years) and 28 quarters (7 years)
does not change the results qualitatively or quantitatively much. As an alternative approach, we
regress disagreement on the standard deviation of GDP growth and keep the residuals. We denote
this approach as purification , and the results are also robust to this choice. We discuss this in
the robustness section in more detail.

12



term survey expectations (see, e.g., Coibion and Gorodnichenko, 2012; Coibion and
Gorodnichenko, 2015; Andrade et al., 2016).

Another source of variation affecting the disagreement in output forecasts could
also be related to events that affect the productive capacity of the economy, such as
the conduct of monetary policy, geopolitical events (e.g., oil shocks in the 1970s, the
China-US trade war from the mid-2010s onward), or uncertain growth prospects in
the future. If private information matters relatively more than common information,

sentiment shocks may exert a stronger impact on the economy.

4. Results

This section presents the empirical results. By focusing on the state-dependence of
sentiment shocks, we move beyond the analysis in Enders, Kleemann, and Miiller
(2021) and Chahrour, Nimark, and Pitschner (2021). To set the stage, we first con-
trast the identified shocks with those obtained in a linear setting. We conclude the

section with an extensive robustness analysis.

4.1 Sentiment shocks

In what follows, we showcase the sentiment shock series, ¢, identified from the
STVAR. This series is then used to trace the causal, state-dependent effects of sen-
timent shocks. Recall that we identify sentiment shocks based on merely imposing
a negative co-movement of output and the nowcast error. Nowcast errors provide us
with a measure of the mistakes made by market participants in real-time. Including
these nowcast errors in the model provides us, therefore, with an informational ad-
vantage over market participants. Conventional time series models have difficulties
recovering these mistakes (Blanchard, L’Huillier, and Lorenzoni, 2013).

Figure 2 presents the estimated sentiment shocks. There is considerable variation
in the whole sample, with larger shocks present at the beginning of the sample and
during recessions. We compare the sentiment shock series to the series resulting from
a linear framework. The correlations are very high (above 0.9) for both the center
and the tails of the distribution. This suggests that the identification also works
in a non-linear framework but also indicates that non-linearities seem to play no
major role in the identification of the shock itself. After all, the state-dependence

we consider does not alter the co-movement of output and the nowcast error. As
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Figure 2: Sentiment shocks from the STVAR.
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Notes: The upper panel reports the sentiment shocks of the STVAR framework. The black solid line refers to the
median estimate while the gray shaded areas refer to the 68%/80%/90% credible sets. The dashed blue and maroon
lines refer to sentiment shocks estimated in a VAR framework (1969Q4-2014Q4 refers to the original sample of Enders,
Kleemann, and Miiller (2021), 1969-2019Q4 extends the sample). They gray shaded rectangles refer to the NBER
recession dates. The lower panels report scatter plots to compare different quantiles (q05,950,q95) to the linear
outcomes of sentiment shocks for both samples. We also report correlations between these series. The horizontal and

vertical axis denotes the shock: linear (x-axis) or non-linear (y-axis).

sentiment shocks are surrounded by uncertainty, they constitute a generated regressor
in the local projection framework. Inference is still asymptotically valid under the null
hypothesis that the coefficients are zero (Pagan, 1984).!' In an additional exercise,
we use our Bayesian framework to integrate out the uncertainty surrounding the
generated regressor when estimating the STLPs.

In the appendix, we report the impulse response functions of the nowcast error
and output to the sentiment shock from the STVAR framework (see Figure B1). In
general, they are similar to the linear impulse responses reported by Enders, Klee-

mann, and Miiller (2021). However, differences arise across the regimes. In the

" This argument is put forward in the context of state-dependent local projections by Born, Miiller,
and Pfeifer (2020) and also discussed in Coibion and Gorodnichenko (2015), footnote 18.
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low disagreement regime, the effects on output are smaller and are estimated with
higher precision. These effects are not strongly statistically different across regimes.

Responses of the nowcast errors do not differ markedly across regimes.

4.2 The effects of sentiment shocks

Before we present the outcomes of the state-dependent model, we show the results
of a linear specification. We reduce Eq. (3.4) to a linear specification by suppressing
the dependency on the level of disagreement. We display the sequence of {8}/,
which represents the dynamic causal effects of a sentiment shock.'? The black solid
lines show the median estimates, while the shaded areas indicate the 68%, 80%, and
90% credible sets. The horizontal axis measures the impulse response horizon in
quarters. The vertical axis measures deviations from the trend in percent. In the
baseline specification, we include four lags of the dependent variable and the shock
series. The results are based on treating the sentiment shock series, €/, as observed.
In the appendix, we report the outcomes once we take the estimation uncertainty of
the first stage into account (see Figure B3).

Figure 3 shows the responses of the nowcast error, output, and prices to a sen-
timent shock normalized to unity. This translates into a negative nowcast error of
one percentage point; that is, the consensus forecaster is mistakenly excessively op-
timistic. The reaction of output is positive—as imposed via the sign restrictions to
identify a sentiment shock. It is an expansionary sentiment shock, where optimism
about current output growth causes actual output to increase. Expectations exceed
output, such that the response of the nowcast is negative. Prices, however, do react
only after some time. Prices increase by a maximum of 0.5 percent compared to the
pre-shock level, but this effect is not statistically significant.

We move on to the presentation of the state-dependent effects of sentiment shocks
in Figure 4. We now split the dynamic causal effects of a sentiment shock into two
sequences, {37 }HL | for each regime r € {L, H}. The black solid lines (gray shaded
areas) show the median (quantile) estimates for the high disagreement case, and the
blue dashed line (blue shaded areas) shows the results for the low disagreement case.
In the appendix, we report the outcomes once we take the estimation uncertainty of

the first stage into account (see Figure B4).

12Note that in the linear specification, the construction of the shock series, €7, is also done in a linear
VAR setting.
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Figure 3: The linear effects of a sentiment shock.
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Notes: Estimates based on STLP with identified sentiment shock (e?). Dependent variables are the nowcast error,
output measured by real GDP (log), and prices measured by consumer prices (log). The estimation covers the period
1969Q4-2019Q4. The black solid lines refer to the median estimate; the gray areas refer to the 68%/80%/90% credible
sets. The horizontal axis measures the impulse response horizon in quarters. The vertical axis denotes deviations

from trend in percentage points (nowcast error) or percent (output, prices).

Figure 4 shows the responses of the nowcast error, output, and prices to a senti-
ment shock normalized to unity. This translates into a nowcast error of one percentage
point; that is, the consensus forecaster mistakenly overpredicts output by one percent-
age point in real time. This means the consensus forecaster is excessively optimistic.
The shock transmits differently across regimes. The reaction of the nowcast errors
in both regimes is negative on impact, while the reaction of output is positive—the
defining feature of a sentiment shock. It is an expansionary sentiment shock, where
optimism about current output growth causes actual output to increase. Expectations
exceed output, such that the response of the nowcast is negative.

However, the transmission differs fundamentally depending on the initial level
of disagreement. In the case of high disagreement, output increases strongly and
persistently. We find a two percent increase in output after two years. The response
of prices, in contrast, is basically flat. There is even a mild and short-lived decline
4-6 quarters after the shock takes place, but estimated with little statistical precision.
We observe the opposite pattern in cases where initial disagreement is low. In this
case, prices increase by a full 1.5 percent after two to three years, while output is
fairly unresponsive: After the initial increase, it quickly reverts back to its initial
level. It even undershoots the pre-shock level; however, this effect is not significant.

The differences across regimes are statistically significant for output and prices after
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Figure 4: The state-dependent effects of a sentiment shock.
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Notes: Estimates based on STLP with identified sentiment shock (e?). Dependent variables are the nowcast error,
output measured by real GDP (log), and prices measured by consumer prices (log). The estimation covers the period
1969Q4-2019Q4. The black solid (blue dashed) lines refer to the median estimates of Bff (BL) in the high (low)
disagreement regime. The gray (blue) areas refer to the 68%/80%/90% credible sets of the respective regime. The
horizontal axis measures the impulse response horizon in quarters. The vertical axis denotes deviations from trend in

percentage points (nowcast error) or percent (output, prices).

four quarters. Only after three (prices) and four (output) years following the shock
do the credible sets start to overlap again.

We offer a structural account of these patterns in Section 5. In a nutshell, if there
is high volatility in and hence uncertainty about aggregate technology, agents rely less
on their priors. They are, instead, more attentive to the signals they receive, which
also makes them more susceptible to the noise contained therein. As this noise is
responsible for sentiment shocks, their (positive) effect on demand and, subsequently,
output increases. The muted reaction of inflation results from firms’ pricing decisions.
A stronger effect of sentiment shocks implies that they (incorrectly) expect other firms
to have much lower prices due to better technology, which, together with strategic
complementarity, explains the muted price reaction.

In Figure 5, we report several additional state-dependent effects of a sentiment
shock. We report the outcomes of core prices, dispersion, various subcomponents of
GDP (consumption and investment), and financial variables (stock market and the
federal funds rate). It is reassuring that dispersion, the threshold variable, is not
reacting to the shock. The estimates are around zero on average, with uncertainty
bands ranging from -0.2 to 0.2. Note that this variable is standardized, implying a

standard deviation of one. The effects are thus far from sizable.
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Figure 5: Additional state-dependent effects of a sentiment shock.
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Notes: Estimates based on STLP with identified sentiment shock (afs’). Dependent variables are the core prices
(log), real consumption (log), stock market index measured through the S&P 500 (log), disagreement, real durable
consumption (log), real private residential fixed investment (log), federal funds rate, real nondurable consumption
(log), and real private nonresidential fixed investment (log). The estimation covers the period 1969Q4-2019Q4. The
black solid (blue dashed) lines refer to the median estimates of 87 (8F) in the high (low) disagreement regime.
The gray (blue) areas refer to the 68%/80%/90% credible sets of the respective regime. and The horizontal axis
measures the impulse response horizon in quarters. The vertical axis denotes deviations from trend in percentage
points (dispersion, federal funds rate) or percent (core prices, real consumption, S&P 500, real durable consumption,

real private residential fixed investment, real nondurable consumption, real private nonresidential fixed investment).
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The shock transmits through both consumption and investment. Looking closer
at durable and nondurable consumption, we observe that the reaction of real durable
consumption is more front-loaded, while the reaction of real nondurable consump-
tion is more persistent in the high disagreement regime. Similarly, the reaction of
real private investment builds up in the beginning before starting to flatten out. In
the low disagreement regime, on the other hand, consumption responds negatively
but with high statistical uncertainty. Although real private residential investment
responds negatively, nonresidential investment increases before turning zero and be-
comes insignificant, with no strong differences across regimes. In summary, in the
high disagreement regime, we observe significant positive responses for consumption
and investment, while reactions are more muted in the low disagreement regimes
(except for residential investment).

Lastly, we turn to the financial variables. We do not observe strong differences
for the S&P 500 stock market index, setting the financial economy aside as a possi-
ble explanation for these differences. For the federal funds rate, we observe different
reactions across the regimes. In the low disagreement regime, the central bank re-
acts relatively quickly to the rise in prices. In the high disagreement regime, the
central bank has an accommodative stance, although not strongly statistically signif-
icant, before turning restrictive after two to three years to prevent the economy from

overheating.

4.3 Relation to (technology) news shocks

There is a tight connection between noise shocks—or “sentiment shocks”—and news
shocks. In fact, Chahrour and Jurado (2018) show the observational equivalence be-
tween these information structures. To investigate this link more closely, we also
examine the state-dependent effects of news shocks. Specifically, we examine a news
shock to technology that maximizes the forecast error variance of total factor produc-
tivity (TFP) at a long but finite horizon (Francis et al., 2014). To isolate the shock,
we estimate a non-linear vector autoregression and use the modified max share ap-
proach by Kurmann and Sims (2021) to identify the technology news shock. Then,
we use the framework of state-dependent local projections to examine the responses
to our core set of variables. The approach is thus equivalent to the one we use for

sentiment shocks.
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Figure 6: The state-dependent effects of a news shock.
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Notes: Estimates based on STLP with identified technology news shock (Kurmann and Sims, 2021). Dependent
variables are the nowcast error, output measured by real GDP (log), and prices measured by consumer prices (log).
The estimation covers the period 1969Q4-2019Q4. The black solid (blue dashed) lines refer to the median estimates
of BH (BF) in the high (low) disagreement regime. The gray (blue) areas refer to the 68%/80%/90% credible sets
of the respective regime. The horizontal axis measures the impulse response horizon in quarters. The vertical axis

denotes deviations from trend in percentage points (nowcast error) or percent (output, prices).

Similar to the specification of Barsky and Sims (2011), the VAR features TFP,
consumption, output, and hours worked.!3 All variables are in real per-capita terms
(except for hours worked, which are not deflated) and enter the VAR in (log)-levels.
We use three lags with a Minnesota prior. The identification of a technology news
shock rests on the assumption that a distinguishing feature of a technology shock is
its ability to have long-run implications for the macroeconomy. The technology news
shock maximizes the forecast error variance share of TFP at a horizon of 10 years.'*

We present the results in Figure 6. We show the responses of the nowcast er-
ror, output, and prices to a technology news shock normalized to unity. The state-
dependent response of output to a news shock is similar to that of a sentiment shock:
In the high-disagreement regime, we find stronger output effects than in the low dis-
agreement regime. In terms of the nowcast error and prices, the outcomes differ from
those of sentiment shocks. We find no strong effect on the nowcast error. For prices,
we find a negative effect in the high disagreement regime, while in the low disagree-

ment regime, the outcomes are not statistically significant. The negative effect on

13We use the TFP measure provided by Fernald (2014), which is based on the growth accounting
methodology in Basu, Fernald, and Kimball (2006) and corrects for unobserved capacity utilization.

14 Additionally, we do not impose zero-impact restrictions to separate anticipated from surprise
shocks to technology (Kurmann and Sims, 2021). This helps to avoid measurement issues that
may arise with a variable like TFP in the short-run. Our approach is robust to imposing the zero
restriction.
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prices is consistent with the findings in Barsky and Sims (2011) and Kurmann and
Sims (2021).

To summarize, we highlight the similar state-dependent response of output to
a news shock compared to that of a sentiment shock. This underscores the tight
connection between noise and news shocks. We stress that both shocks are identified
using completely different setups, work through other transmission mechanisms, but
show similar real effects on the macroeconomy. Hence, uncertainty, as measured by

forecaster disagreement, is essential in the transmission of a shock to expectations.

4.4 Subsample stability and robustness

We conduct several exercises to inspect the robustness of our main results. As a first
check, we re-do the analysis on certain subsamples to assess the stability of the esti-
mates. The second check consists of several robustness checks in the state-dependent
local projections framework. We present the results in Figure 7 and Figure 8.

For the subsample stability analysis, we re-estimate both the STVAR and the
STLP on shortened subsamples. We investigate two subsamples: a “Post Volcker
sample” starting in 1983Q1 and a “Pre financial crisis sample” ending in 2007Q4. For
the former subsample, we show the results in panel (a) of Figure 7. Macroeconomic
volatility was substantially heightened in the 1970s and early 1980s due to the large
oil price shocks and the Volcker shock. Hence, our results may be sensitive to this
particular episode. However, our results are robust: In the high-disagreement regime,
output reacts stronger while prices react rather muted. On the contrary, in the
low-disagreement regime, output reacts muted and prices increase. In the latter
regime, output may even decrease in the long run. Furthermore, magnitudes seem
to be subdued in comparison to the baseline results. Now, we turn to the second
subsample reported in panel (b) of Figure 7, in which we exclude all observations
starting from the financial crisis. In this case, the impulse responses are similar in
shape and magnitude to the baseline results. Again, we observe a decrease in output
in the low-disagreement regime.

We also provide robustness to specification choices in the STLP in Figure 8.15
In our baseline results, we scale disagreement using the moving-average standard

deviation of output growth over the last 24 quarters. The window of 6 years (=24

15We report robustness checks for the impulse response functions of the remaining variables in the
appendix; see Figure B7 and Figure BS.
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Figure 7: Subsample stability to the state-dependent effects of a sentiment shock.
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Notes: Estimates based on STLP with identified sentiment shock (slt’)‘ Dependent variables are the nowcast error,
output measured by real GDP (log), prices measured by consumer prices (log). The estimation covers either the
period 1983Q1-2019Q4 (upper panel) or 1968Q4-2007Q4 (lower panel). The black solid (blue dashed) lines refer
to the median estimates of 8 (BL) in the high (low) disagreement regime. The gray (blue) areas refer to the
68%,/80%/90% credible sets of the respective regime. The horizontal axis measures the impulse response horizon in
quarters. The vertical axis denotes deviations from trend in percentage points (nowcast error) or percent (output,

prices).

quarters) reflects a typical business cycle frequency of 5 to 7 years. Hence, changing
the window to 5 years (=20 quarters) or 7 years (=28 quarters) does not change the
results much. We argue that measuring disagreement through the interquartile range
is a more robust measure than using the standard deviation. However, using the
standard deviation as a measure of disagreement does not change the results either.
Lastly, we also use an alternative approach to transform the disagreement series.
Instead of scaling, we regress disagreement on the standard deviation of output growth
and keep the residuals. We denote this approach as purification , and the results are

again robust to this choice. As we utilize Bayesian shrinkage priors for regularization
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Figure 8: Robustness to the state-dependent effects of a sentiment shock.
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Notes: Estimates based on STLP with identified sentiment shock (slt’). Dependent variables are the nowcast error,
output measured by real GDP (log), prices measured by consumer prices (log). The estimation covers the period
1969Q4-2019Q4. The black solid (blue dashed) lines refer to the median estimates of 8 (BE) in the high (low)
disagreement regime. The gray (blue) areas refer to the 68%/80%/90% credible sets of the respective regime. Col-
ored lines with circles refer to robustness specifications: Scaling using a different moving average process (20 or 28
quarters), scaling using the standard deviation as dispersion measure, using purification instead of scaling, and prior
sensitivity analysis (no regularization in the second or both estimation steps). The black dashed lines refer to the
maximum/minimum 90% credible interval across all robustness specifications. The horizontal axis measures the im-
pulse response horizon in quarters. The vertical axis denotes deviations from trend in percentage points (nowcast

error) or percent (output, prices).

in the empirical framework, we also perform prior sensitivity checks. Results do not
change qualitatively or quantitatively when imposing no regularization on the STLP
or on both the STLP and the STVAR. In these cases, no regularization means using
a totally uninformative prior that resembles ordinary least squares.

We also report the maximum and minimum of the 90% credible interval bounds
(period-by-period) across all robustness specifications in the figure. This allows us
to examine robustness regarding the second moment. Generally, credible intervals
tend to widen when we consider a larger set of specifications. While the main results

concerning the nowcast error and output do not change, we observe that the response
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of prices in the high disagreement regime turns statistically insignificant. This aligns
well with most median responses, also moving more towards the null line. This
underscores that we tend to interpret the outcome of prices in the high disagreement

regime as a null effect.

5. Theory

We now put forward a model that allows us to formally define sentiment shocks,
discuss their impact on economic activity, and the role of expectation dispersion.
The model captures, in a stylized way, the informational friction that gives rise to
nowcast errors.

Lorenzoni (2009) and Coibion and Gorodnichenko (2012) find that models of in-
formation rigidities, in general, and of noisy information, in particular, are successful
in predicting the empirical regularities of survey data on expectations. Our model
thus builds on the noisy and dispersed information model of Lorenzoni (2009). As
our goal is to derive robust qualitative predictions, we simplify the original model,
notably by assuming predetermined rather than staggered prices. As a result, it is

possible to solve an approximate model in closed form.

5.1 Setup and timing

There is a continuum of islands (or locations), indexed by [ € [0, 1], each populated
by a representative household and a unit mass of producers, indexed by j € [0, 1].
Each household buys from a subset of all islands, chosen randomly in each period.
Specifically, it buys from all producers on n islands included in the set B;;, with
1 < n < 00.1% Households have an infinite planning horizon. Producers produce
differentiated goods on the basis of island-specific productivity, which is determined by
a permanent, economy-wide component and a temporary, idiosyncratic component.!”
Both components are stochastic. Financial markets are complete such that, assuming
identical initial positions, wealth levels of households are equalized at the beginning

of each period.

16This setup ensures that households cannot exactly infer aggregate productivity from observed
prices. At the same time, individual producers have no impact on the price of households’ con-
sumption baskets.

17As argued by Lorenzoni (2009), this setup can account for the empirical observations that the
firm-level volatility of productivity is large relative to aggregate volatility and that individual
expectations are dispersed.
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The timing of events is as follows: each period consists of three stages. Dur-
ing stage one of period t, information about all variables of period ¢ —1 is released.
Subsequently, nominal wages are determined, and the central bank sets the interest
rate based on expected inflation. Shocks emerge during the second stage. We distin-
guish between shocks that are directly observable and shocks that are not. Sentiment
and technology shocks are not directly observable in the following sense: informa-
tion about idiosyncratic productivity is private to each producer, but, in addition,
all agents observe a signal about average productivity. While the signal is unbiased,
it contains an i.i.d. zero-mean component: the sentiment shock. We allow for one
generic shock that is observable. To simplify the discussion, we refer to this shock
as a “monetary policy shock” with the understanding that other observable shocks
would play a comparable role in terms of identification. Given these information sets,
producers set prices.

During the third and final stage, households split up. Workers work for all firms on
their island, while consumers allocate their expenditures across differentiated goods
based on public information, including the signal, and information contained in the
prices of the goods in their consumption bundle. Because the common productivity
component is permanent and households” wealth and information are equalized in the
next period, agents expect the economy to settle on a new steady state from period

t+1 onwards.

5.2 Households

A representative household on island [ (“household {”, for short) maximizes lifetime

utility, given by

00 1

U.=TF k—t Ll:]?p

It = l,tZﬁ thl,k—l_HO >0, 0<pB<I1,
k=t

where E;; is the expectation operator based on household {’s information set at the

time of its consumption decision in stage three of period ¢ (see below). Cj; denotes
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the consumption basket of household [, while L, is its labor supply. The flow budget

constraint is given by

1
Ei01444+101: + By + Z / P 1tCimairdy <
0

mEBlyt
1
/ I 1edj + Wi Ly + Ope—1 + (L +1421)Biy—1,
0

where C},, . denotes the amount bought by household [ from producer j on island
m and P;,, ;¢ is the price for one unit of C},, ;. At the beginning of the period, the
household receives the payoftf ©;;_;, given a portfolio of state-contingent securities
purchased in the previous period. II;,; ; are the profits of firm j on island [ and 07441
is household [’s stochastic discount factor between ¢ and t41. The period-t portfolio
is priced conditional on the (common) information set of stage one, hence we apply
the expectation operator E,. B;; are state non-contingent bonds paying an interest
rate of r;. The complete set of state-contingent securities is traded in the first stage
of the period, while state-non-contingent bonds can be traded via the central bank
throughout the entire period. The interest rate of the non-contingent bond is set
by the central bank. All financial assets are in zero net supply. The bundle Cj; of
goods purchased by household ! consists of goods sold in a subset of all islands in the
economy

0
y—1

1 T o=
Ciy = - Z /0 Cimiid v > 1.

mEBz,t
While each household purchases a different random set of goods, we assume that
the number n of islands visited is the same for all households. The price index of
household [ is therefore

1
1—v

1 Lo
S FD O

meBu

5.3 Producers and monetary policy

The central bank follows an interest-rate feedback rule but sets 7, before observing

prices, that is during stage one of period ¢:

T = YEep e + 14 P >1,
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where 7; is economy-wide net inflation, calculated on the basis of all goods sold in
the economy. The expectation operator E; is conditional on the information set
of the central bank. This set consists of information from period t—1 only, that is,
the central bank enjoys no informational advantage over the private sector.!® v is a
monetary policy shock that is observable by producers and households alike.

Producer j on island [ produces according to the following production function
Yiie=AjL5, 0<a<l,

featuring labor supplied by the local household as the sole input. A;;; = A;; denotes
the productivity level of producer j, which is the same for all producers on island (.
During stage two, the producer sets her optimal price for the current period. Given

prices, the level of production is determined by demand during stage three.

5.4 Productivity and signal

Log-productivity on each island is the sum of an aggregate and an island-specific

idiosyncratic component

art = T + Nig

2
n

responsible for the dispersion of expectations. A higher value of U% also worsens the

where 7, is an i.i.d. shock with variance o; and mean zero. This variance will be
signal-to-noise ratio of the signals received by private agents, which creates a positive
link between dispersion and uncertainty. The idiosyncratic shock aggregates to zero
across all islands. That is, even if private sentiment shocks were included here, they

would cancel in the aggregate. The aggregate component x; follows a random walk
Ax, = g,
The i.i.d. productivity shock &; has variance o2 and mean zero. During stage two of
each period, agents observe a public signal about ;. This signal takes the form
St = & + €4,

18Pre-set prices and interest rates allow us to discard the noisy signals about quantities and inflation
observed by producers and the central bank in Lorenzoni (2009), simplifying the signal-extraction
problem without changing the qualitative predictions of the model. Pre-set wages, on the other
hand, guarantee determinacy of the price level. They do not affect output dynamics after sentiment
and technology shocks, because goods prices may still adjust in the second stage of the period.
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where ¢; is an i.i.d. sentiment shock with variance o2 and mean zero. Producers also

observe their own productivity. Hence, their expectations of Ax; are
Ej 1Az = phse + 08 (a0 — we),

with E;;, being the expectation of producer j on island [ when setting prices (in
stage two). The coefficients p? and 6P are the same for all producers, where these
and the following p and d-coefficients are functions of the structural parameters that
capture the informational friction. They are non-negative and smaller than unity; see
Appendix C. Finally, while shopping during stage three, consumers observe a set of
prices. Given that they have also observed the signal, they can infer the productivity

level of each producer in their sample. Consumers’ expectations are thus given by
E Az, = pls; + 6"
LtAT = PS¢+ 0,Q1 4,

where a;; is the average over the realizations of a,,; — x;—1 for each island m in
household I’s sample. p” and 0" are equal across households. The model nests the
case of complete information about all relevant variables for households and producers
if 02 = 0. If 02 > 0, producers will set prices based on potentially overly optimistic or
pessimistic expectations of productivity. Consumers also have complete information

if n — oo.
5.5 Market clearing
Goods and labor markets clear in each period:
1 1
/0 Cjmigdl = Yjme Vi,m Ly = /0 Lj.dj Y,
where Cj,,;; = 0 if household [ does not visit island m. The asset market clears in
accordance with Walras’ law.

5.6 Results

We derive a solution of the model based on a linear approximation to the equilibrium
conditions around the symmetric steady state; see Appendix C for details. Lower-
case letters denote percentage deviations from the steady state. In line with our
empirical identification strategy, we obtain the following propositions for which we

provide proofs in Appendix D.
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Proposition 1 A sentiment shock, e;, induces a negative correlation between the
reactions of output and the nowcast error, while a technology shock, ;, induces a
positive correlation. A monetary policy shock, vy, does not cause a nowcast error.

Formally, we have
Q@

=z + 1 - Q M-+ —— 5.5
Ye xt1+g1(v Zet+[(x+px)(v )+ e ST (5.5)
>0 >0 N pA d

<

. o n—8"(1—a)[(n—1)8541]
with 0 < Q2 = nat(1—a){ (1-0)[1+68 (n—1)]+(n—1)v(1-3) } <1, and

Yt — Ek,tyt = \—Pi [52(1 - Q) + Qlet +\[5a}cl(1 - Q) + Q] (1 - 51; - P];) Et,

<0 >0

with Ky, standing for either expectations of producers, E;,;;, or households, E;;, and
Pk, 8% correspondingly for pP, 8P or p', 6",

Hence, positive productivity and sentiment shocks raise actual output but also
lead to output misperceptions. Consider first the sentiment shock. Producers expect
aggregate productivity to be high—resulting in higher demand—but also observe that
their own productivity is unchanged, which they attribute to a negative realization of
the idiosyncratic productivity component. Consequently, they raise prices above what
they expect the average price level to be. Consumers, in turn, observe higher prices
besides the public signal. They, too, attribute this increase to adverse temporary
productivity shocks suffered by those particular firms from which they buy. This
allows households to entertain the notion of higher aggregate productivity and future
income. They thus raise expenditures despite the observed price increase and, hence,
economic activity expands.!® Yet, as each producer and each household considers
itself unlucky relative to its peers, current output is actually lower than expected: a
negative nowcast error obtains.

After a positive productivity shock, producers also do not fully trust the signal
about the aggregate component and attribute some of the increased productivity to
an idiosyncratic advantage. They therefore reduce prices below what they expect the
average price level to be. Consumers, in turn, observe lower prices and expect higher

income. They consequently raise consumption. However, both producers and their

19 As pointed out by Lorenzoni (2009), the sentiment shock provides a possible microfoundation for
the traditional concept of a demand shock: agents are too optimistic about economic fundamentals,
resulting in unusually high demand.
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customers expect other producers to set higher prices and consequently underestimate
actual output. A positive nowcast error obtains, inducing an opposite correlation
between output and the nowcast error for sentiment and productivity shocks.

Finally, we stress that monetary policy shocks have no impact on nowcast errors.
More generally, any other shock that enters the information set of households and
producers will not generate nowcast errors, as both are aware of the economic en-
vironment and, hence, the effect of shocks. Misperceptions about economic activity
thus arise only after imperfectly observed shocks, such as innovations in productivity
or sentiment shocks.

Building on the above, the next proposition establishes that the model can also
rationalize our empirical findings regarding the role of uncertainty (which we measure

by forecaster disagreement).

2
5

Proposition 2 A higher volatility o> of aggregate technology leads to a higher dis-
persion of now- and forecasts of output by firms and households and a lower impact
of positive sentiment shocks on prices. It also leads to a higher impact of positive
sentiment shocks on output if
2 2 2
o2/n  oi/n
Q (—”/ + 2 ) > 1,

2 2
08 0-6

where
Q={1+(n—-1)[(1-a)+al}/a>1

If the variance of, and hence uncertainty about, aggregate technology increases,
agents put more weight on the signals they receive. On the one hand, a higher
weight on private signals raises the dispersion of now- and forecasts, as these signals
contain an idiosyncratic component. On the other hand, a higher weight on the
public signal changes the impact of noise on consumption and price-setting decisions.
Specifically, due to consumers’ higher attention to the signal, the effect of noise on
demand and thus output increases. The impact of noise on producers’ expectations
also rises, letting them (incorrectly) expect even lower prices from competitors due to
better aggregate technology, which induces them to set lower prices themselves. Thus,
higher volatility of aggregate technology lowers prices in reaction to noise shocks,

which amplifies the increase in demand.?°

20A simple extension in which agents obtain another public signal with a fixed signal-to-noise ratio
in stage one of the period can also generate the sign flip of the price response between the high-
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This can also be seen in the equations governing the reaction of output and prices

to noise. Turning to output first, we have, according to Equation (5.5)
7
8615

The parameter p” is households’ optimal weight on the public signal when forming

= (1 -9).

expectations about the economic fundamentals (productivity) and, hence, future in-
come, where higher expected income increases current demand. The parameter —()
reflects the impact of a technology shock on current prices. After a noise shock, house-
holds expect future prices to be lower than their current price sample, which reduces
the positive impact of the noise shock on current demand. Whenever the variance of
aggregate productivity increases, uncertainty increases and households pay closer at-
tention to the signal. Thus, p and the expectations of permanent income are higher
after a noise shock. At the same time, firms also put a higher weight on the public
signal when setting prices, which raises 2, the impact of an (perceived) increase in
overall technology on prices. In principle, this would exert positive pressure on out-

put. However, the demand channel dominates unless the informational content of the

2

private signal observed by the households is very large (og /n << o?

) and contains
much less noise than the public signal (07 /n << 07). In this case, 0,,/(no?)+o,/(no?)
can be smaller than o//Q (where @) > 1 and o < 1), which would violate the condition
given in the proposition. However, as the volatility of idiosyncratic technology shocks
037 is much larger than the aggregate one (see, e.g., Lorenzoni, 2009) and households
are unlikely to have a very large informational advantage over firms (such that n is
not too large), this is a very mild condition, likely to be always fulfilled. Assuming,
say, that a person/agency/media outlet which produces the public signal collects at
least as much information as an average household would automatically satisfy the
condition (as 62 < o7 /n in this case).

Turning to prices, Equation (C.14) in the appendix gives the impact of noise on
prices:
n—1

dpy 11—« n—1

it . h h
> -0 (el

Pal s (5.6)

«

2) -6 - 1)

and low disagreement regimes documented in Figure 4. A positive signal in stage 0 would raise
wage demands. The described dynamics in stage 2 would then overturn this upward pressure on
prices only in the case of high values of o2.
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which represents the impact of noise on demand and hence expected marginal costs.
It is zero in the case of constant returns to scale (o« = 1), as demand is then irrelevant
for price setting. The first term in the bracket reflects the (positive) impact of changes
in overall household demand following a noise shock. This is governed by households’
reaction to the public signal p/, influencing estimates about long-run income, and
households’ reaction §” to observed prices, determining intertemporal substitution.
Specifically, the term p2(n — 1)/n represents an individual firm’s assessment of the
price signals received by its customers. This assessment increases in the number n of
observed prices by households, and the reaction p? of producers to the signal. Since

a higher variance of aggregate technology leads households and firms to pay more

2
-

attention to the signals, this whole term is increasing in o

The second term of Equation (5.6) reflects the (negative) impact of strategic com-
plementarity, i.e., intratemporal substitution: after a positive noise shock, firms set
lower prices as they expect competitors to have lower prices. This effect is stronger for
higher effective degrees of substitutability «(n — 1) /n. Producers pay more attention
to the public signal (p? rises) for a higher volatility of aggregate technology and hence
reduce prices further after noise shocks. Since changes in competitors’ prices have an
over-proportional impact on own demand (as v > 1), compared to the overall increase
in demand, this strategic-complementarity effect dominates the demand effect of the

first term. Thus, Op;/0e; falls in o2.

6. Conclusion

This paper examines the conditions that make the economy susceptible to non-
fundamental shocks. Specifically, we look into business cycle shocks that are driven

7

by expectations—we label those “sentiment shocks.” We document that forecaster
disagreement is essential for the transmission of sentiment shocks. If there is signif-
icant disagreement, economic activity is affected more, while we do not observe an
effect on prices. If, instead, disagreement is low, the effect is absorbed by prices and
has only a little impact on output.

We show these outcomes in a state-dependent local projections framework. Before
that, we identify sentiment shocks using a bivariate smooth-transition VAR model, in
which we apply the same sign restrictions as in Enders, Kleemann, and Miiller (2021).

In both frameworks, we define two polar regimes of high and low disagreement. Each
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observation is assumed to be a weighted average between these polar cases allowing
for a continuous switching between the polar cases. We use the empirical cumulative
density function within our sample to assess the relative degree of disagreement.

In the last part of the paper, we put forward a New Keynesian model with dis-
persed information to rationalize our findings. The key assumption in the model is
that households and firms do not observe aggregate productivity at the time of deci-
sion making. Instead, they rely on expectations, which they form based on a public
signal and private information. If aggregate technology is more volatile, agents turn
more to the available signals, which makes them increase demand and lower prices

after noise shocks in anticipation of a currently higher technology level.
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Online Appendix: Dancing in the Dark: Sentiment Shocks
and Economic Activity

A. Further details on data and econometric methodology

A.1 Data sources

All series were gathered from the sources listed below, including the Bureau of Eco-
nomic Analysis (BEA), the Federal Reserve Economic Data (FRED) database, the
Real-Time Data Set for Macroeconomists and the Survey of Professional Forecasters
(SPF) provided by the Federal Reserve Bank of Philadelphia.

In Table Al, we provide an overview of the data, their transformations, and

sources.

Table A1l: Data definitions, transformations, and sources.

Variable (yit) Transformation Mnemonic Source

Output 100 log x4 GDPC1 FRED

Output (first-release) Tt routput BEA

Output Nowcast i RGDP SPF

Output Disagreement D(xy) RGDP SPF

Consumer prices 100 log ¢ CPIAUCSL FRED

Core prices 100 log x4 CPILFESL FRED

Federal funds rate Ty FEDFUNDS FRED

Real consumption 100 log =+ PCE FRED

Real durable consumption 100 log ¢ PCEDG FRED

Real nondurable consump- 100 log z¢ PCEND FRED

tion

S&P 500 100 log x4 P Robert Shiller’s website
Real private residential 100logx; PRFI FRED

fixed investment

Real private nonresidential 100 log PNFI FRED

fixed investment

Financial uncertainty (h = finunc Sydney Ludvigson’s website
1)

Macro uncertainty (h =1) macrounc Sydney Ludvigson’s website

Notes: The dispersion function D(y;:) refers to either the standard deviation or the in-
terquartile range.


https://www.bea.gov/data
https://www.bea.gov/data
https://fred.stlouisfed.org/
https://www.philadelphiafed.org/surveys-and-data/real-time-data-research/real-time-data-set-for-macroeconomists
https://www.philadelphiafed.org/surveys-and-data/real-time-data-research/survey-of-professional-forecasters
http://www.econ.yale.edu/~shiller/data.htm
https://www.sydneyludvigson.com/macro-and-financial-uncertainty-indexes
https://www.sydneyludvigson.com/macro-and-financial-uncertainty-indexes

A.2 Smooth-transition vector autoregression

As detailed in Section 3, we use a bivariate smooth-transition vector autoregression
(STVAR) to identify sentiment shocks non-linearly. In this appendix, we provide
additional information on the model and its estimation. The time series process
{y 3L, (2 x 1) follows

Y= (Anyir + ...+ Apyi—y) X Fz1)
+ (Anyo1 + ...+ Apyip) X (1 — F(221)) (A.1)
+ ¢ + cot + est® + uy, u, ~ N(0,3,),
where A,; are 2 x 2 coefficient matrices for regime r € {1,2} and lag j € {1,2,...,p},
the 2 x 1 vectors ¢;, ¢z, and ¢z denote the coefficients corresponding to the intercept,
trend, and quadratic trend. The 2 x 1 vector u; denotes the reduced-form innovations,

which are normally distributed with zero mean and time-varying variance, 3;. The

time-variation results from the state-dependency as follows
3 =31F(z-1) + 22(1 — F(z-1)), (A.2)

where F'(z;_1) denotes the transition function. It reads as follows

Zt 1 Z]l < Zt— 1 (A3)

where T is the number of observations in our sample, 1 is an indicator function,
and j indexes all observations. The function equals one if disagreement is at the
maximum of the sample: a situation in which information is extremely dispersed. On
the contrary, if the function equals zero, the disagreement is at its minimum.

As an alternative, we also use the logistic function as a transition, as is often
done in the literature (Auerbach and Gorodnichenko, 2012; Caggiano, Castelnuovo,
and Groshenny, 2014; Tenreyro and Thwaites, 2016; Falck, Hoffmann, and Hiirtgen,
2021). Therefore, we specify the transition function based on the logistic function,
following Granger and Terisvirta (1993). We assume that the alternative F'(z_1)

follows

R exp <0—zt‘012_c>
F(Zt—l) - )
1+ exp (e—zt;z—6>

where ¢ corresponds to the mean and o, to the standard deviation of z;_;. The

(A.4)

smoothness parameter # determines the curvature of F(z_;) and how strongly the



economy switches from the low- to the high-disagreement regime when 2, changes.
Several previous studies have calibrated rather than estimated the smoothness pa-
rameter . We follow their suggestion and use a value of § = 5.

The model estimation is done in a Bayesian fashion and thus we discuss our
prior choices. Conditional on the state indicator function F(z_;), the model
is linear. Hence, we collect VAR parameters of regime r in the K x 1 vector
a, = vec(A,,...,A,p) with K = n?p. The prior variances are collected in
V, = diag(vei, ..., 0k), with vy = A2 for k = 1,...,K and r € {1,2}. We
propose a hierarchical global-local shrinkage prior setup based on the horseshoe (HS)

prior following Carvalho, Polson, and Scott (2010), which reads as follows
a’?" ~ Nk (&7 E) 9 AT ~ C+(07 1)7 ¢'I‘k ~ C+<O7 ]')7 (A5>

where C'" denotes the half-Cauchy distribution. The parameter ), denotes the global
shrinkage parameter of regime r, which exerts shrinkage on all coefficients. The
parameter v, allows for individual, coefficient-specific shrinkage. Both parameters
are estimated, and we do not have to specify any hyperparameters. We use the
procedure outlined in Makalic and Schmidt (2015) to sample from the corresponding
conditional posterior densities. We center the prior distribution of a, on a,, which
is either unity for series in log-levels (mimicking the Minnesota-type prior in Doan,
R Litterman, and Sims, 1984 and R B Litterman, 1986) or zero in all other cases. For
the deterministic terms, we assume a non-informative Gaussian prior ¢; ~ A(0, 10%)

where [ = {0, 1,2}. The prior distribution of the covariance matrix is
X, ~iW(y,S), (A.6)

where iWW (v, S) denotes the inverse Wishart distribution with prior degrees of free-
dom v and prior scaling matrix S. Following the recommendation in Kadiyala and
Karlsson (1997), we specify v = n + 2 and S = diag(s,?,...,s2). Here, the diag-
onal elements of the scaling matrix s? (j = 1,...,n) denote the sample variance of
the residuals of an AR(4) process for each individual series. If we also estimate the
parameter of the transition function, we must specify a prior density. For the speed

of adjustment parameter 6, we then specify a Gamma distribution such that

where ¢ = 20 and b = 4. This translates into a prior mean of 5 and a prior variance

of 1.25. In case we do not estimate this parameter, we fix it to 5.



As a last step, we briefly discuss the posterior simulation within an MCMC al-
gorithm. Conditional on the regime indicator function F(z;_1), the model is fully
linear, and all conditional posterior distributions are available in closed form, render-
ing a Gibbs sampler convenient. Although the conditional posterior distribution of
the VAR coefficients and the covariance matrix are standard, we use the auxiliary
sampler of Makalic and Schmidt (2015) to sample from the conditional posterior den-
sities for the HS prior. Lastly, if necessary, the parameter related to the transition
function, #, must be sampled with the help of a Metropolis-Hastings within-Gibbs

step since the posterior distribution is not available in closed form.

A.3 State-dependent Bayesian local projections

We summarize the state-dependent local projections (LP) specified in Equation (3.4)

in the following formulation
Ahyt-l—h = 5;/3h +Zi v+ U’Ei)hv uzgi)h ~ N(0, ‘7121)’ (A.8)

where A" = y,., — 1,1 denotes cumulative differences, &, = [8? X (1= F(z-1)),
eb x F(zt_l)]/ and 3, = [ﬂ}f, B,{I]/ are 2 X 1 vectors. Similarly, we gather all (lagged)
control variables in Z,_; = [(1, X;_1) % (1 — F(z_1)), (1, X,_1) X F(2z_1),t,t}]" and
define the corresponding coefficient vector v = [af, vf, aff v ,Tlh,Tgh]/, both as
k x 1 vectors where k = 2(n, + 1) + 2.

Lusompa (2023) noted that the error term w;,, follows an autocorrelation process,
which is known. Given that the data {y,;} are stationary and purely non-deterministic,
such that there exists a Wold representation y; = 1, + Z?; ©,n—;, Lusompa (2023)

shows that the autocorrelation process in the error terms is known as
h
u§+)h = O + ...+ O1Nph1 + N, (A.9)

which implies there exists a linear and time-invariant vector moving average represen-
tation (VMA) of the uncorrelated one-step ahead forecast errors {n,}. In population,
the error process is a VMA(h) even if the true model is not a (V)AR. Furthermore,
it holds that

O1n =0, = Ul(t]fr)h = Q1M + - -+ PuNepn—1 + Mg, (A.10)



where ¢y, € =, corresponds to the coefficient of the first lag of the endogenous

variable, Ay;_;. Lusompa (2023) proposes to use the following transformation

Ay = APy — G — . — dihesnot, (A.11)

which eliminates the autocorrelation in the residuals. For an estimate of the residuals,
M, we note that for the horizon 0 LP, n, = ug}fr)h holds.

This transformation can also be used in conjunction with Bayesian estimation. In
the Bayesian treatment, one needs to set up the likelihood and elicit prior densities.
Due to LP being standard linear regressions, we elicit well-known independent priors
for linear regressions. On both coefficient vectors, 3; and ~;,, we impose independent
Gaussian priors. Note that we are interested in treatment effect estimation of (3
where the number of control variables is potentially large relative to the number of
observations. Hence, we use a regularization prior for v. On each element of 3 we do
not want to impose any form of regularization and impose an uninformative Gaussian

prior given by

B}JLC NN <Hzﬁ?—fz,ﬂ> ’ Vz € {La H}a (A12)
where Mg =0 and V73 5 = 100. Following the results in Hahn et al. (2018), the

presence of a regularization prior can still introduce a bias to the treatment effects.
This bias arises due to confounding and depends on the predictability of Z;_; by e;.
Given the exogeneity of the sentiment shock and the predeterminedness of Z; ;, we
argue that this is not a major issue.

For «y, we define the prior variances as V,, . = diag(vy, ..., v;) with v; = A2 for
1 =1,...,k. We propose a hierarchical global-local shrinkage prior setup based on
the horseshoe (HS) prior following Carvalho, Polson, and Scott (2010), which reads

as follows
o~ N (s Vin ) s A~ CHOT), i~ CF(0,1) (A13)

where C" denotes the half-Cauchy distribution. The parameter )\, denotes the global
shrinkage parameter of regime r, which exerts shrinkage on all coefficients. The pa-
rameter 1, allows for individual, coefficient-specific, shrinkage. Both parameters are
estimated and we do not have to specify any hyperparameters. We use the procedure
outlined in Makalic and Schmidt (2015) to sample from the according conditional pos-
terior densities. We center the prior distribution of v on zero although other options

are feasible as well (e.g., unity on the coefficient corresponding to the first own lag to



resemble the Minnesota prior in Bayesian LPs; see also Ferreira, Miranda-Agrippino,
and Ricco, 2023). For the deterministic terms, we do not impose any shrinkage and
assume zero mean and a large variance, e.g., 10°. The prior distribution of the vari-

ance term, o, we impose a conjugate inverse-Gamma prior distribution,
or ~iG(c, d), (A.14)

where we set ¢ = 3 and d = 1 to be uninformative.

Similarly to the sampler of the STVAR, we briefly discuss the posterior simulation
within an MCMC algorithm. Conditional on the regime indicator function F'(z;_1) the
model is fully linear and all conditional posterior distributions are available in closed-
form, rendering a Gibbs sampler convenient. Although the conditional posterior
distribution of the VAR coefficients and the covariance matrix are standard, we use
the auxiliary sampler of Makalic and Schmidt (2015) to sample from the conditional
posterior densities for the HS prior. Lastly, and if necessary, the parameter related to
the transition function, #, has to be sampled with the help of a Metropolis-Hastings-

within-Gibbs step since the posterior distribution are not available in closed-form.



B. Additional empirical results

This section reports additional empirical results not reported in the main text. We
split this section into two parts. First, we report any additional results regarding
the outcomes of the smooth-transition vector autoregression. In the second part, we

report additional results of the state-dependent local projections.
B.1 Additional results of the smooth-transition vector autoregression

Figure B1: Impulse responses by regime.
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Notes: Estimates based on STVAR model. Identification based on sign-restrictions. The estimation covers the period
1969Q4-2019Q4. Black solid (blue dashed) line refers to the median response, while gray (blue) shaded areas indicates
the 68%/80%/90% credible sets. The horizontal axis measures the impulse response horizon in quarters. The vertical

axis denotes deviations from trend in percentage points (nowcast errors) and percent (output).

Figure B1 reports the state-dependent impulse response functions of the STVAR
model. We use the bivariate STVAR model to distinguish between sentiment and
nonsentiment shocks. As is clearly visible in the figure, the nonsentiment shock
shows a positive comovement between the nowcast error and output as imposed on
impact through the sign restrictions. Similarly, we impose on impact a negative

comovement between the nowcast error and output to identify a sentiment shock.
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In terms of differences across regimes, we find as well stronger effects on output in
the high disagreement regime. However, the impulse response function is much more
hump-shaped, obscuring the effects we find in the local projections framework. This is
due to the relatively small amount of lags in the STVAR model, which may introduce
a bias in the impulse responses beyond the horizon of the number of lags introduced
to the STVAR.

B.2 Additional results of the state-dependent local projections

Figure B2: Using the logistic function as transition function.
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Notes: Estimates based on STLP with identified sentiment shock (ag) using a logistic transition function. Dependent
variables are the nowcast error, output (log), prices (log). The estimation covers the period 1969Q4-2019Q4. The
black solid (blue dashed) lines refer to the median estimates of 37 (8F) in the high (low) disagreement regime.
The gray (blue) areas refer to the 68%/80%/90% credible sets of the respective regime. and The horizontal axis
measures the impulse response horizon in quarters. The vertical axis denotes deviations from trend in percentage

points (nowcast error) or percent (output, prices).

In this section, we report a couple of additional results of the state-dependent
local projections. First, we provide robustness to the type of transition function.
While we use the empirical cumulative distribution function for our main results, we
provide robustness to using the logistic function as the transition function. Therefore,
we specify the transition function on the basis of the logistic function, as discussed
in Equation (A.4). We follow several previous studies, which have calibrated rather
than estimated the smoothness parameter 6. We follow their suggestion and use a
value of § = 5. Figure B2 reports the results, which show only negligible differences
to the main outcomes in Figure 4.

In a next step, we account for the uncertainty of the generated regressor. As we

pursue a Bayesian approach to estimation, we retrieve a full posterior distribution of



Figure B3: Accounting for the uncertainty of the generated regressor (LP).
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Notes: Estimates based on LP with identified sentiment shock (£?) accounting also for the uncertainty around the
sentiment shock. Dependent variables are the nowcast error, output measured by real GDP (log), and prices measured
by consumer prices (log). The estimation covers the period 1969Q4-2019Q4. The black solid lines refer to the median
estimate; the gray areas refer to the 68%/80%/90% credible sets. The horizontal axis measures the impulse response
horizon in quarters. The vertical axis denotes deviations from trend in percentage points (nowcast error) or percent

(output, prices).

the sentiment shock, which we denote as p(g?). Note that this constitutes a posterior
distribution, but we do not indicate that we condition on the data. In a next step, we
adapt the algorithm for the Bayesian (ST)LP slightly. In each iteration of the Gibbs
sampler, we draw from the distribution of the sentiment shocks: (£2)*) ~ p(eb),
where (s) denotes the s-th iteration of the Gibbs sampler. This fully accounts for
the uncertainty of the sentiment shock as a generated regressor when estimating
the (ST)LP. We report the outcomes of this adjusted procedure in Figure B3 and
Figure B4. While the posterior median is the same, credible sets have increased as
we account for the additional uncertainty transmitted through the estimation of the
sentiment shock itself. However, credible sets are still indicating significant results
similar to the baseline results. Hence, our results are robust when accounting for
this uncertainty explicitly. This comes as no surprise since already Wooldridge (2002,
p. 117) notes that generated instruments do not suffer from the inference problem
associated with generated regressors highlighted by Pagan (1984). We note that our
sentiment shock series is not an instrument but an exogenous shock, but the conditions
imposed are similar.

We perform some additional robustness checks regarding the threshold variable.
In the baseline, we use the interquartile range of the forecasters’ forecasts in the SPF

regarding output growth as a measure of disagreement. Additionally, we scale the



Figure B4: Accounting for the uncertainty of the generated regressor (STLP).
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Notes: Estimates based on STLP with identified sentiment shock (%) accounting also for the uncertainty around
the sentiment shock. Dependent variables are the nowcast error, output measured by real GDP (log), and prices
measured by consumer prices (log). The estimation covers the period 1969Q4-2019Q4. The black solid (blue dashed)
lines refer to the median estimates of B (BF) in the high (low) disagreement regime. The gray (blue) areas refer to
the 68%/80%/90% credible sets of the respective regime. The horizontal axis measures the impulse response horizon
in quarters. The vertical axis denotes deviations from trend in percentage points (nowcast error) or percent (output,

prices).

series using the moving standard deviation of output growth using a window of 24
quarters. However, we could have chosen other threshold variables as well. Here,
uncertainty measures come to our mind as effects may differ for disagreement and
uncertainty measures (Born, Dovern, and Enders, 2023; Gambetti et al., 2023). We
thus provide a robustness check, in which we use the financial and macro uncertainty
measures provided by Jurado, Ludvigson, and Ng (2015). These measures are statisti-
cally significantly correlated to our baseline measure. The correlation coefficients are
0.35 (p < 0.01) and 0.22 (p < 0.01) for financial and macro uncertainty, respectively.
As a last check, we scale our baseline disagreement series by the real-time moving

standard deviation of output growth.
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Figure B5: Additional robustness checks: uncertainty and real-time threshold variable.
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(a) Threshold variable: Financial uncertainty.
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(c) Threshold variable: Real-time disagreement.

Notes: Estimates based on STLP with identified sentiment shock (5?) Dependent variables are the nowcast error,
output measured by real GDP (log), and prices measured by consumer prices (log). The estimation covers the period
1969Q4-2019Q4. The black solid (blue dashed) lines refer to the median estimates of 81 (BL) in the high (low)
disagreement regime. The gray (blue) areas refer to the 68%/80%/90% credible sets of the respective regime. The
horizontal axis measures the impulse response horizon in quarters. The vertical axis denotes deviations from trend in

percentage points (nowcast error) or percent (output, prices).
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We report the results of these checks in Figure B5. Our main findings are robust
to these alternative indicators for uncertainty/disagreement. We find a stronger out-
put reaction in the high disagreement/uncertainty regime, while we find a stronger
price reaction in the low disagreement/uncertainty regime. In the high disagree-
ment /uncertainty regime, prices are not statistically different from zero. For output
in the low disagreement regime, the outcomes are more mixed. When using disagree-
ment, we find, similar to our main results, only a short-lived positive reaction before it
quickly turns insignificant and fluctuates around zero. For the uncertainty measures,
we even find a reversal of the initial positive reaction after three years. Although we
think the comparison to uncertainty measures is important, we opt for disagreement
in our baseline. The reason is mainly consistency: Similar to our construction of the
nowcast error, we use consistently the same survey, which asks the same respondents.
This allows us to investigate the effect of sentiment shock conditional on the level
of disagreement these forecasters operate. In contrast, the uncertainty measures are
constructed outside of the SPF and thus may not ideally mimic the informational
environment of these forecasters.

We conduct further robustness checks with the state of the business cycle. As dis-
agreement is correlated with the business cycle Dovern, Fritsche, and Slacalek (2012),
an alternative interpretation is that our results are not due to information frictions
but that capacity utilization differs over the business cycle. During recessions, a de-
mand impulse boosts output, while during booms, the economy is near full capacity
and a demand impulse is absorbed by prices. First, we report low correlations to the
state of the business cycle (p = —0.06 of the baseline disagreement measure with a
seven-period moving average process of quarterly growth rates; p = —0.14 for year-
on-year growth rates). This is in contrast to Dovern, Fritsche, and Slacalek (2012)
who focus not on nowcasts for the disagreement but on one-year ahead expectations
for constructing disagreement.

Then, we conduct two exercises. In the first, we re-estimate the baseline version
of the model but control additionally for the level of the business cycle. We use
three different measures: MA(7) of real GDP growth, a dummy for recessions, and
the unemployment rate. This eliminates any potential level effect of the business
cycle. In the second exercise, we off-project the information contained in the business
cycle information from the disagreement series before constructing the state indicator

(purification). This orthogonalizes the disagreement series to the business cycle.
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Figure B6: Controlling for the state of the business cycle.
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Notes: Estimates based on STLP with identified sentiment shock (slt’). Dependent variables are the nowcast error,
output measured by real GDP (log), and prices measured by consumer prices (log). The estimation covers the period
1969Q4-2019Q4. The black solid (blue dashed) lines refer to the median estimates of 8 (BE) in the high (low)
disagreement regime. The gray (blue) areas refer to the 68%/80%/90% credible sets of the respective regime. Colored
lines with symbols refer to robustness specifications: adding business cycle controls (MA(7) of real GDP growth,
dummy for recessions, and the unemployment rate) and purification of the disagreement series by the state of the
business cycle (only contemporaneous correlation or adding one or four lags). The horizontal axis measures the
impulse response horizon in quarters. The vertical axis denotes deviations from trend in percentage points (nowcast

error) or percent (output, prices).

Figure B6 reports the results showing the median estimate and credible sets of
the baseline model and the median estimates of the alternative specifications. The
baseline model is both robust to the level of the state of the business cycle and off-
projecting (purifying) the information of the business cycle from the disagreement
state indicator series. None of the alternative models diverge strongly from the base-
line model.

In Figure 8, we report robustness regarding the window size, using the standard
deviation instead of the interquartile range, or doing purification. We refer to purifi-
cation as off-projecting the information contained in the moving standard deviation

via a linear regression. Additionally, we also report robustness checks for using differ-
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ent prior distributions imposing no regularization. We only report those robustness
checks for our main variables of interest (nowcast error, output, and prices) but not for
our extended set of variables. Here, we report those additional variables in Figure B7
and Figure BS.
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Figure B7: Robustness to the state-dependent effects of a sentiment shock (high
disagreement).
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Notes: Estimates based on STLP with identified sentiment shock (slt’) Dependent variables are the nowcast error,
output measured by real GDP (log), prices measured by consumer prices (log). The estimation covers the period
1969Q4-2019Q4. The black solid (blue dashed) lines refer to the median estimates of 8 (BL) in the high (low)
disagreement regime. The gray (blue) areas refer to the 68%/80%/90% credible sets of the respective regime. Colored
lines with symbols refer to robustness specifications: Scaling using a different moving average process (20 or 28
quarters), scaling using the standard deviation as dispersion measure, using purification instead of scaling, and prior
sensitivity analysis (no regularization in the second or both estimation steps). The horizontal axis measures the
impulse response horizon in quarters. The vertical axis denotes deviations from trend in percentage points (nowcast
error, dispersion, federal funds rate) or percent (output, prices, core prices, real consumption, S&P 500, real durable
consumption, real private residential fixed investment, real nondurable consumption, real private nonresidential fixed

investment).
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Figure B8: Robustness to the state-dependent effects of a sentiment shock (low
disagreement).

Core Prices Real Consumption S&P 500
1.5
1 -
O, O,
051 5949000000 o

ST

o
IN
©
P
N
=
o
N
o
[N}
~
o
IN
©
P
N
=
o
N
o
[N}
~

0 4 8 12 16 20 24

l|§ea| Private Residential Fixed Investment

10 A

Fedfunds Real Nondurable Consumption

0 4 8 12 16 20 24 0 4 8 12 16 20 24 0 4 8 12 16 20 24
—&— Scaling IQR (h=20) —&— Scaling SD (h=24) —£— No Regularization (BLP)
—— Scaling IQR (h=28) —+—Purification 1Q (h=24) No Regularization (BLP & STVAR)

Notes: Estimates based on STLP with identified sentiment shock (7). Dependent variables are the nowcast error,
output measured by real GDP (log), prices measured by consumer prices (log). The estimation covers the period
1969Q4-2019Q4. The black solid (blue dashed) lines refer to the median estimates of 81 (BL) in the high (low)
disagreement regime. The gray (blue) areas refer to the 68%/80%/90% credible sets of the respective regime. Colored
lines with symbols refer to robustness specifications: Scaling using a different moving average process (20 or 28
quarters), scaling using the standard deviation as dispersion measure, using purification instead of scaling, and prior
sensitivity analysis (no regularization in the second or both estimation steps). The horizontal axis measures the
impulse response horizon in quarters. The vertical axis denotes deviations from trend in percentage points (nowcast
error, dispersion, federal funds rate) or percent (output, prices, core prices, real consumption, S&P 500, real durable
consumption, real private residential fixed investment, real nondurable consumption, real private nonresidential fixed

investment).
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C. Model solution

In Appendix D, we provide the proofs for Propositions 1-2 in Section 5. In a pre-
liminary step, we outline the model solution and key equilibrium relationships in
Appendix C. Throughout, we consider a linear approximation to the equilibrium con-
ditions of the model. Lower-case letters indicate percentage deviations from steady
state.

We solve the model by backward induction. That is, we start by deriving inflation
expectations regarding period ¢t + 1. Using the result in the Euler equation of the
third stage of period t allows us to determine price-setting decisions during stage two.
Eventually, we obtain the short-run responses of aggregate variables to unexpected

changes in productivity or sentiment shocks.

Expectations regarding period t+1. Below, E;; stands for either E;; ;, referring
to the information set of producer j on island [ at the time of her pricing decision,
or for [E; 4, referring to the information set of the household on island [ at the time of
its consumption decision. Variables with only time subscripts refer to economy-wide

values. The wage in period ¢t + 1 is set according to the expected aggregate labor
supply
Ek,t¢lt+1 = Ek,t(wt—'rl — Pt+1 — Ct+1)-
This equation is combined with the aggregated production function
Ek i1 = By (21 + alig),
the expected aggregate labor demand
Ert(wir1 — pes1) = B el + (1 — @) liga],

and market clearing y;41 = ¢;41 to obtain By ;2411 = Ep 4ye 41 = Eg i1 Furthermore,

the expected Euler equation, together with the Taylor rule, is

Ericiyr = Ep(cera + T — Ymig).

Agents expect the economy to be in a new steady state tomorrow (Ej ;ci11 = E 1r42),
given the absence of state variables other than technology, which follows a unit root

process. Ruling out explosive paths yields

]Ek,tﬂ'tJrQ = Ek,tﬂ'tﬂ =0.
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Stage three of period t. After prices are set, each household observes n prices
in the economy. Since the productivity signal is public, the productivity level a;;; =
a;—which is the same for all producers j € [0,1] on island I—can be inferred from
each price p;;; of the good from producer j on island /. Hence, household [ forms its

expectations about the change in aggregate productivity according to
E; Az, = PZSt + 5Zdl,t,

where a;; is the average over the realizations of a,,; — z;—; for each location m in

household I’s sample. The coefficients p? and 6" are equal across households and

2

depend on n, o’

,02, and 0727 in the following way:

2 2
o:/n o
;= 2 4 52 ; oioy/n’ 0 = 24 42 - oioy/n (C.1)
ae—i—an/n—i—g—g 0-€+0-7]/n+0'—§
N g N
v Vv
—0 if n—>o0 —1 if n—o0

Producers, on the other hand, only observe the signal and their own productivity.

They thus form expectations according to

E; Az, = pPsy + 08 (ar — x4-1), (C.2)
with
_ 02 5 — o?
a§+ag+%§g : 0§+03]+%§g’

such that §" > 0P because of the higher information content of households’ observa-
tions. Consumption follows an Euler equation with household-specific inflation, as
only a subset of goods is bought. Agents expect no differences between households
for t+ 1, such that expected aggregate productivity and the overall price level impact
today’s individual consumption. Also using E;;piy1 = Eupe and Epyaep = Ejpay

gives
ey = By + Ky ipr — prg — 1 (C.3)

Similar to the updating formula for technology estimates, households use their avail-

able information to form an estimate about the aggregate price level p; according to

E p = pﬁst + 5£&z,t + /i]';wt + T;It_l — ngrt. (C4)
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Combining the above gives
ar=(1+ Tﬁ)xt,l + p;‘pst + 5;‘1)&[7,5 + /ﬁZwt -1+ ng)rt — DLt (C.5)

where pfl, = pli4pl and 6}, = 6! + 7. We will solve for the undetermined coefficients

below.

Stage two of period t. During the second stage, firms obtain idiosyncratic signals
about their productivity. In the following, the index p;, is the average price index of
customers visiting island [. If customers bought on all (that is, infinitely many) islands
in the economy, p;; would correspond to the overall price level. Since consumers only
buy on a subset of islands, the price of their own island has a non-zero weight in their

price index, which is taken into account further below. Firms set prices according to

1l -« 1
Ejtyjie — gt

Pjit = W +
=E 4 kB D + BBy — kya,

with
L/ Q r 7(1_0‘) r_ -« r_ 1

o) T atl-a) 2T aryl-a) P atq-a)
(C.6)

From here onwards, expressions that are based on common knowledge only (such as
k') are treated like parameters in notation terms, i.e. they lack a time index. This fa-
cilitates the important distinction between expressions that are common information
and those that are not. Evaluating the expectation of firm j about aggregate output

in period ¢, given equation (C.5), results in

1 n—1 1 n—1
K11y =k" + p';pst + 5;LpEj,l,t (ﬁal’t + - Ejitxe — xt_1) - (Epj,l,t + o ]Ej,l,tpt> )

where k" = (147 )21 — (141 )r,+rhw, contains only publicly available information.
Furthermore, it is taken into account that the productivity of island [ has a non-zero
weight in the sample of productivity levels observed by consumers visiting island [.
Note that producers still take the price index of the consumers as given, since they
buy infinitely many goods on the same island. Inserting the above into the pricing
equation (C.6) yield (here, p; is the average of the prices charged by producers of all

other islands, which is the overall price index as there are infinitely many locations)

Djit =k + k1E; 0 + l;?St — ksayy,
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with

—
- =]
= =

(W k) k=

(1] —

S|

{k' + KLk + % [(n—1)(1—0%) —1] xt_l} (C.7)

_1 B k! —1 1 k'é;‘
R I S| (R A=y %::{%—-2PKH—D$+H}-

n- n

Note that, according to (C.6), 0 < k] — k, < 1 because 0 < v < 1 and y > 1. Using
the definition of k; in (C.7), this implies (observe that n > 1)

0<k <1
Aggregating over all producers gives the aggregate price index
pe =k + ki Eepy + ksy — ks,

where [ ajdl = x;, and Eyp, = [[E;1pe djdl is the average expectation of the price
level.

The expectation of firm j of this aggregate is therefore
B, = k4 ksy — ks w0 + ki By Erpy
—k+ (k - kgpg) st — ksdPa — k(1 — )2y + ki By Eipr. (C.8)
Inserting the last equation into (C.7) gives
Pra =k k= kaks (L= 02)z 1+ [k + by (B = kso2) | 0 — (ks + kukso?) af + BB i
To find E;;,Fyp;, note that firm j’s expectations of the average of (C.8) are
E; B =k — ks(1— 67)(1+ 6P)z_y + <k — kP — kgcsg;pg) st — ksdP2ay, + kB B py,
)

where E(z

is found by plugging the last equation into the second-to-last:

is the average expectation of the average expectation. The price of firm j

P = (k+ kik + kk) — [kiks(1 — 67) + kiks(1 — 08) (1 + 08)] 24
[ by (= ko) + 0 (B = kst — kodlp) ] s
— (ks + kiksd + K2ks02%) ay, + KB, B py.
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Continuing like this results in some infinite sums
piae =k (L4 ki + K + k...
—kmgy—gﬂ1+hu+ﬁ@+kﬂy+g+ﬁfy+ﬁu+ﬁg+@2+&?”ﬂ@4
[t (B = kop) + 83 (= kot — Rooph ) + k3 (B — kgl — apldh — kaphd??) + ... | 0
— kg (14 ka6% + k2072 + K307 ) agy + KR B .
For the terms in the third line, we have
Fet o (B kil ) + 0 (T — bl — kooph ) + k3 (I = kol — kophd? — p02?)
+ﬁ(%—@¢—kwwg—@@@?—@¢@ﬁ.”
=k(1+k +k}+E..) — (kiksph + kikspl + ki kapl . .)
— (8Pkiksph + 0Lk kaph + 6Pkitksph .. ) — (622K ksp? + P2 kiksph + P2k ksph .. ) ...

5 ok, pPoP2 k2
k(14 k +E2+ k. ) —kk P Peozky | paos hy
(L oy A A A ) 13(1—k:1+1—k:1+1—k1

ok kiksph , 29
1=k ik (1+ 6%k1 + 68°k7 ..)
k kyksph

1ok (1= k(1= 0Bk
Proceeding similarly with the terms in the other lines results in

ko l(1-02) ks 1 <~ ks ) ks

(k- _
T R T R %1—h$ T kot

CLLt—f—]{ZTOEEOO) Dt
—

Dt =
—0

Setting idiosyncratic technology shocks equal to zero in order to track the effects of

aggregate shocks and observing that all firms then set the same price gives
Pt = ki + ks + E?@’ta
with
_ 1 kiks _ 1 ~ kiks _ ks
ki = k—(1—-00)———ux,_ ky = k — ks = — )
eyl Ll 91—@&“11 2 1—@( ﬁ1—m$) 3T T kol
(C.9)

To arrive at qualitative predictions for the impact of the structural shocks ¢; and e,

on output growth and the nowcast error, we need to determine the sign and the size
of k3. Note that, according to (C.7),
ky — nks /o, + ky(n — 1)oP
n— (k= k) ’
21

h
—k3 =0,



where the first part of the numerator can be rewritten, by observing (C.6), as
1—n/tt —a
Ky, —nkh/oh =——
2 n3/xp Oé—|—’7(]_—06)
Using (C.6) and (C.7) thus yields
(1—a)[(n—1)02+1] — n/52p
(n—1Da+~y(1—-a)+1

h
. —

Plugging this into the definition of k3 in (C.9) gives

(1—a)[(n—1)5£+1]—n/6ﬁp
T _ gh (Do)t
87 Y] o _(n=D)(=1(=a)
*(n—Dlar(1-a)+1

To obtain 0%, = 07 4 67, we need to find the undetermined coefficients of equation
(C.4). Start by comparing this equation with household I’s expectation of equation
(C.9):

El’tpt = El + Eg(lft_l + (Eg + Egpg) St + Egég (All,t. (ClO)
S ~~ ~/ [\ —~ vl v
KRwi Tl 1 —nkre ph o

Hence, 67, = 6"(1 + k3). Inserting this into the above expression for k3 yields

n/Y — M

hs == T ohp

(C.11)
with
T=mn-1Da+y1—-a)+1>0 U=1-a)(n—1)0"+1]/T >0
d=1-0"n-1)(H -1 -a«a)/T.
The signs obtain because n > 1,0 < a < 1,62 > 0, and v > 1. Observe that T < n
because 07 < 1. Hence, n/Y — 6" > 0 because
n— & ¥Y >0,

~—

>0,<1 <P
implying that the numerator of (C.11) is positive. Turning to the denominator & —

6™ observe that ® — ¥ > 0. The denominator of (C.11) is therefore positive as well,
and we have k3 < 0. Next, consider that n/Y < ® and we obtain

—1<E3<0.

This is a key result for the derivation of Propositions 1 and 2; see Appendix D.
Multiplying the numerator and the denominator of the fraction in equation (C.11)

by T and rewriting gives the expression used in Proposition 1.
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Prices
other shocks to zero. Using equation (C.9), we get

Py = ki + ke,

where k; includes the wage. Furthermore,

_ Lk _ 1 . _
T el LESGLA R

>—1,<0

where we have used equation (C.9). According to (C.7),

1
k== [K + kyrhw] .
Remember that,
1—
=%, ké:—a =_1_
P aT(—a)

see (C.6) and (C.7). As a result,
na+ (1 —a)[(n— 1)y +1]
na+ny(l — )

—_—
—
—

Note that 1 — k£ can be written as

According to (C.10)
]21 = /QZwt.

Combining the last two equations yields

ki =w, — /f’;:l.

Turning to ko, observe that according to (C.7)

~ 1 1l -« n—1

Za++(1—a)
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We now investigate the effect of a noise shock on prices, that is, we set the

(C.12)

(C.13)



Hence, keeping in mind the derivation of (C.13),

iy = 1_1k1 [%+k1E3pﬂ

_ k-
—(1—a) |+~ " k
(1= a) ol o8| o
Inserting the insights from (C.10) yields
_ ki —
] R R e P
— K1
= L4 kg) + 6" (1+k —————k3pP.
o |:p33( + 3)+ a:( + 3) pg +Cl/(1—]€1) 3p€
Then observe that, see (C.12),
1 Kk n—1 11—«
- = —1 .
al—k; n (v ) «
The total effect of noise on inflation, according to
pe = wy + koey
is then
0 —1 —11—a-
R e R e RGN AT
3et n
where Q = —kj is used in the main text.

Stage one of period ¢t As information sets of agents are perfectly aligned during
stage one, we use the expectation operator E; to denote (common) stage-one expecta-
tions in what follows. Combining the results regarding expectations about inflation in
period t41 with the Euler equation, the Taylor rule, and the random-walk assumption

for x; gives
Ewye = Epxy — B,

Remember that the monetary policy shock emerges after wages are set. Its expected
value before wage-setting is zero. Combining labor supply and demand with the
production function then yields E;m; = 0, such that E,y; = E,z; = z;_;. Nominal
wages are set in line with these expectations. We thus have determinacy of the price

level. The central bank also expects zero inflation in the absence of monetary policy
shocks.
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D. Proofs

Proof of Proposition 1 Aggregating individual Euler equations (C.3) over all
individuals, using (C.9) and (C.10),

yr =E e + Eppe — pr — 14

=x; "1+ k Sh 4 Tog(8h — 1)]ey — —— D.1
Ty 1+px( + 3>St+ [ :c_'_ 3( x )j|€t Oé—l-’(/}(l—Oé)l/t ( )
=z "1+ k Sh g ol —Fy(1— 0" — )] gy ———
Tt 1+Px(j 3>J€t+\[m+p:v :i(r z Px)lét ot o(l—a) Vi,
>0 >0 ﬂg 4
<

where 1 — 0" — p? > 0 because of (C.1). Note that, if households have full information

(n — o0), we get p! — 0 and 6" — 1. Defining Q = —kj3, we can write
a

=Ty 1+ hl—Q€+ (Sh—l— M1 -0 +Qlegg— ——.

Yt t—1 pa:( )t [(x p:r:)( ) }t Oé—l-"(/}(l—Oé)t

The signs indicated above result from 0 < Q = —ks < 1 (derived in Appendix C).
Now consider the nowcast error, where expectations are either those of households
or producers, that is, E;; substitutes for either E;;, or E;;, and p*, §* correspondingly

for pP, 67 or ph, §". Taking expectations of equation (D.1) gives

Byt =241 + ol (1 + EB) 5t + [55 + ks (00 — 1)] Epe0 — 14
=1+ {p(L + k3) + [6F + E3(6! — 1)]pE} s, + [6F + Ks(6! — 1)] 0Fe, — 7v.

— Er = = 0 [0 + ka(0z = D] so + [0 + ka(0; = D] (1 - 6’“)et
=i [0+ ka(0h — )] en + [0 + Ea(87 — 1)] (1 =

AN
-~ -~ ~~

<0 >0 >0

px) €t,

or
- Ek,tyt = _Pl; [52(1 - Q) + Q} e+ [55;(1 - Q) + Q} (1 - 5’; - Pi)gt'

The fact that 0 < €2 < 1 allows us to determine the signs of the effects of the shocks

on the nowcast error. [ |
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Proof of Proposition 2 A higher volatility o2 of aggregate technology leads to...

...a higher dispersion of now- and forecasts of output by firms

As stated by equation (C.2), firms form their expectations according to
Ej,l,tAmt = pﬁst + (52((1,[7,5 — .%'tfl),

such that the dispersion of expectations is given by (55)203]. Remember that the

public signal s; and the common productivity shock €, are the same for all firms. The

effect of o on expectation dispersion is then

6(55)20727 — 2<5p>2pp 02

2 4
0o? ol

which is positive, such that the impact of o

2
Oe

2

2 on the dispersion of nowcasts of x; is

also positive. It follows that also now- and forecasts of inflation and output are more

dispersed for a higher o2

...a higher dispersion of now- and forecasts of output by households
The derivation for households is equivalent to that of firms, with the only difference

that 6" is used instead of 7.

...a higher impact of positive optimism shocks on output

Equation (D.1) states
a

h T W, h T h h
= o 1+k ) —ks(1 -0, — &g — ——— 1.
Yt Tt 1+p:p( + 3)€t+[m+px 3( T px)} t a+¢(1—01)yt
Taking the derivative w.r.t. e; gives
Oy h -
— =p (14 k3). D.2
1+ 02)
We are then interested in whether the effect of dispersion, governed by &2, on the
above derivative is positive, that is whether
8ayt/3et
—F > 0.
do?
We proceed in two steps. First, we define, as in the main text, Q = —ks3 for better

readability and derive its derivative with respect to o2. Writing Q = N/D with

N=n—8'(1-a)[(n—1)62+1] D =na+(l—a){(1—8)[1+n—1)]+n—1)y1-3")},
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we have

oD
0N D 80’2 - N

_ o2
Jo? D?
Turning to the derivatives of the p and J coefficients, we define
90F 50 0P o5 s 90} 2 12 aply 212
ol al |V ol o,V 9ol no: /W ol o, /W=,

with V = 02 [02 4+ 07 + 0202 [0?] Jocoy and W = 02 [0? + 02 /n + 0207 /(no?)| n/oeoy.
Using the definition X = [1 + (n — 1)02] = W/V gives
aé% :1520‘03 {(N = D)nX/W?— (n—1) [Dé + N[(1—d2) —~]] /V*}.
Second, to derive the sign of
00y, /ey Oph p 09 oD —N , 09
do? a Jo? *0o? - 077 DW? Z do?’
we define IT := (9Y /00?)V2W?D? /o2, such that

_ V2w2 2

(1-Q)—p

Il=(D-N)V?*D—(1—a)p! U— (N —D)Xn/W?+ (n—1)[N(y—(1—0d2) — D& /V?].

n

Now use the identities p = 0, 02/(0. W) and
Ny =1 =) =Ddg =(y—1nl—(1—a)i].
Substituting these and simplifying the common factors yields

M= (D-N)V*D—(1—a) %ag [n(N = D)V +n(n—1)(y— )W (1 —(1-a)")].

n

Note that
oy(02 + 02) oy(o2 + 0?)
1P = n\%e T Y/ 1—oh="1"e e/
x o,V * oW
and, hence,
o,(02 + 02)
D — 1—q) e " 7/ —1)v].
na+ (1 —a) oV [+ (n—1)7]
Therefore
) ) ) 9 2 2
Uﬁ(ae + O-E)VD _ MV {na + (1 — a) M [1 + (n - 1)’)/]}
—Ue o, o.V

2 2
_02+40?

2

. {[Ja +olor 4+ orolna+ ol (1 —a)(o? +0)[1—|—(n—1)fy]}.
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This can be used, together with N — D = —(1 — a)(n — 1)(1 — 62)(y — 1), in the

following derivations:

I/[(n—1)(v=1)(1 —a)] = (1 - &)V’D — Z— af{n[—(l —a)(1 =)V +nW(1-dr+ a&jg)}
= O'QM {na+ (1 —a)[l+(n—1)y]}— an2Ze%e

n 2 2
lop o,

With this, one obtains, after collection of terms, a single scalar factor deciding the

sign:
- (1=—a)n—=1)(y—-1)
II = Py [Qoé(ag + 03)2 — om2a§aﬂ ,
e%n
where

Q=1(n—1)(1-a)+a(n—1)+1>0.

Because the prefactor [(1 — a)(n — 1)(y — 1)]/(0?07) is positive, we have

00y, /0 _
s1gn(%) = sign(Il) = sign (Qa;‘; (02 +02)? —an?olol >
0-8
That is, the effect of o2 on the impact of noise shocks on GDP is positive if
o2/n  o2/n\’
Q2"+ ) ~a.
0-6 0-6

Given that ) > 1 and « < 1, this inequality holds in realistic cases, in particular if
1. The volatility of the idiosyncratic technology shock is large, 0727 — 00.

2. Households have a minimal informational advantage over firms, n close to unity,
and the volatility of the idiosyncratic technology shock is larger than the aggre-

gate and/or noise volatility (o7 > o2 or o > 07).

Alternatively, one can express this condition in terms of the informational content of
the signals. The condition does not hold if 07 and o7 are both very large relative to o;.
That is, the condition holds, except if the private signal of the households, composed
of price observations, is very precise (ag /n much smaller than ) and simultaneously

contains much more information than the public signal (o7 /n much smaller than o?).

...a lower impact of positive optimism shocks on prices

2

2 equals

Equation (C.14) gives the impact of noise on prices. Its derivative w.r.t. o
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the effect of dispersion on the impact of noise on prices.

The derivative of p; with respect to o? is

0 1 —a n—1
e L e R

If we define K = o? + 0, /n+o0.02/(no?) and L = o + 0} + 0702 /(0?), we can write

n—11—«

ob.

n «

Oy l—ao, (D-N sy N
= o E{ - [L—I—(n—l)ae]—f(y—l)(n—l)}.

Since L + (n — 1)o? = nK and D — N are given above, we have
2
(7= 1) = {1 - a)(1 - 87) - N}.

Opy  1—a o
de;  a nDL
Observing that n — (n — 1)d" = L/K, we can also write
2

~(r= D=1 - )5t = (7= Y -1)(1 - a)

2
€

op: _

aet
We know that p? increases in o
D. Note that

SIES

, such that we only need the sign of the derivative of

K —o?nk L—o?
D:na—l—(l—a){ KaenT—F(n—l)fy LUe}

o2 (1+0?/0?)
L

2

-1
(o 1
:na+(1—a) |:1+O'_7271—{—Tg/0'§:| [1+(n—1)7],

=na+ (1 —a) [T+ (n—1)]

where we used 1+ 62(n — 1) = nK /L. We hence obtain 25 < 0 and
83]),5/@6,5

2
0o?

< 0.
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