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Abstract

I study a formal mechanism that can sustain Pareto optimality in a new and very

broad class of dilemma games. In the absence of a central authority that could enforce

multilateral agreements, the mechanism is based on binding unilateral commitments,

which condition a player�s (possibly multidimensional) contribution on other players�

contributions. I show that unexploitable better response dynamics converge to Pareto

optimal contributions when the game is played recurrently.
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1 Introduction

In this short paper I suggest a mechanism designed to solve dilemma games, games which

are ubiquitous in economics, politics, international relations, and related �elds. Currently,

probably the most prominent example are international climate treaties that aim to limit

CO2 growth, a task where the di¢ culties are plentiful. Countries may not agree on the

urgency of the issue and they may have di¤erent actions they can choose from to mitigate

emissions. But the biggest di¢ culty lies in the absence of a central authority that can

enforce agreements.

Thus, the only hope for stable international treaties is when they are self-enforcing.

The conditional contribution mechanism proposed here is designed to achieve this. Each

player promises to contribute certain (vectors of) actions under the condition that other

players�contributions meet the thresholds set by the player. What is required is that each

player can make internal and unilateral commitments (e.g. through national laws).1 Given

these unilateral commitments, if a government of one country decides to deviate from its

promise, it knows full well that the mechanism would trigger automatic actions by all other

countries making the deviation unattractive.2

The conditional contribution mechanism (CCM) suggested here is designed to work

under voluntary participation and incomplete information (by players and the mechanism

designer) about other players� preferences. Both requirements seem desirable for many

applications. For example, in the context of international climate treaties, no country has

complete information about other countries�costs or their willingness to pay for various

mitigation measures.

The mechanism is intended for the repeated play of dilemma games and works as

follows. In each period, all players submit two statements of the form �We will contribute

action vector ai if other players contribute at least A�i in total.� The mechanism then

picks one action pro�le that is compatible with at least one statement for all players. If no

such feasible action pro�le exists, it will pick a default action a0, which is the �business-

as-usual�(Harstad, 2024) Pareto dominated Nash equilibrium of the dilemma game. The

1As Heitzig (2019) points out, this type of binding mutually conditional commitments is known from
an important current example: the US National Popular Vote Interstate Compact (NPVIC) (Bennett and
Bennett, 2001; Muller, 2007) that aims at repairing the de�ciencies of the US electoral college and electing
the winner of the national popular vote for president of the US.

2On a smaller scale, refundable deposits, contractual arrangements, or even crypto smart contracts can
achieve unilateral commitments.
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mechanism will then adjust all statements so that they agree with the chosen action pro�le

(see below for details) and announce this as feedback to all players.

The reason why the mechanism requires two conditional statements from each player is

that this makes it possible for players to increase their conditional commitments without

risking the status quo. With the �rst statements they can �x the status quo and with the

second they can suggest better alternatives, which - when feasible for all - would make

everyone better o¤. With just one conditional statement, the mechanism could get stuck

at contribution levels, which �while being better than a0 �are still not Pareto optimal.

Simpli�ed versions of the suggested conditional contribution mechanism have been stud-

ied theoretically by Reischmann and Oechssler (2018), Heitzig (2019), and Oechssler et al.

(2022).3 An interesting alternative are contractive mechanisms studied by Healy and Math-

evet (2012). They have desirable theoretical properties but may be too complex is some

situations. There is of course also a very extensive literature on mechanisms for public

goods (Vickrey, 1961, Clarke, 1971, Groves and Ledyard, 1977) and conditional contribu-

tions (Guttman, 1978, 1986).4 Experimentally, the CCM has been studied by Reischmann

and Oechssler (2018), Oechssler et al. (2022), Gürdal et al. (2024), and Casari et al. (2025),

where the last show that the mechanism works for groups as large as 15 players.5 That

it actually also works in the �eld has been shown (albeit at a small scale) in a Ukraine

fund raiser, where we used a slightly di¤erent version under the name �You contribution

squared�and raised more than e60.000.6

To generalize those earlier contributions, I allow for a much broader class of dilemma

games. Most of the literature is concerned with (linear) public good games or multi-person

prisoners� dilemmas. A seminal paper by Dawes (1980) de�nes dilemma games as N -

person games with two actions, defect and cooperate, where defect is strictly dominant

and if all players cooperate, this is better for everyone. To account for the complicated

action spaces e.g. in climate agreements, I allow for multidimensional action spaces Ai �
Rk+. For example, in an international climate policy context, ai;1 might be country i�s
emissions mitigation, ai;2 and ai;3 might be its investments into a climate adaptation fund

3Somewhat overoptimistically, we called the last paper the �general case� because it generalized the
binary case. But it was not general at all since it considered a linear public good game.

4See e.g. Oechssler et al. (2022) for a more systematic literature review.
5MacKay et al. (2015) and Schmidt and Ockenfels (2021) study related mechanisms that are particularly

geared towards reducing CO2 emissions through carbon pricing.
6This fundraiser was organized by Georg Weizsäcker and the current author. The idea was that par-

ticipants promise to donate Xe if at least X people would also promise to donate at least Xe. See
https://yourcontributionsquared.eu/en/ for details.
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and research into renewable energy, and ai;4 a binary variable indicating its agreement to

ban deforestation. Obviously, it makes sense to allow for any number of actions rather than

just two.7 The de�nition of dilemma games I propose is close to the one adopted by Peña

and Nöldeke (2023) but is generalized to the case of more than two actions. Accordingly,

a game is a dilemma game if (1) there is a Pareto dominated Nash equilibrium and (2)

players�actions (or contributions) exert a weakly positive externality on all other players.8

This allows for all the usual dilemmas, like public good games, tragedy of the commons,

and multi-person prisoners�dilemmas. But it also allows for situations where players are

intrinsically motivated to contribute some positive (but insu¢ cient) amount on their own.

Finally, it allows for stag-hunt coordination games with Pareto dominated equilibria.

The CCM mechanism studied in this paper is particularly suitable when the dilemma

game is (�nitely) repeated like the di¤erent rounds of climate conferences. In the one-shot

play of the CCM, there are many Nash equilibria, including the undesirable one, in which

the dominated default action is played every time. In the repeated play of the mechanism,

players have the chance to learn. I assume that they play better responses to the previous

round. But they are also somewhat forward looking and anticipate that other players may

change their strategies too. Thus, among the better responses, they choose better responses

that are unexploitable by other players, in the sense that feasible outcomes that are worse

than the status quo are excluded.

The main result of the paper is that the resulting unexploitable better response process

will converge to Pareto optimal states. This holds even when I allow for players who do

not care at all for the contributions of others and if other players do not know about their

existence. Thus, despite the fact that no player knows how much other players care about

contributions, the process will eventually reach a Pareto optimal state.

2 Dilemma games

Let I be a �nite set of N > 2 players playing a normal form game. For each i 2 I, let
Ai � Rk+ be a �nite, non-empty set of possible actions (or contributions), with the vector

7 In a strict literal sense, a dilemma refers to only two actions but it is not uncommon to be used in
situations with more than two actions. See e.g. the Oxford English Dictionary�s (2025) de�nition: �A
choice between two (or, loosely, several) alternatives, which are or appear equally unfavourable.�

8Liebrand (1983, p. 135) de�nes social dilemmas as situations in which, �by the very act of choosing
a strategy with negative externalities, the ultimate outcome can be called de�cient.� Note that one can
always reverse the sign of the action space to change positive into negative externalities.
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of zero contributions included, 0 2 Ai. An action pro�le a = (ai)i2I 2 A denotes an action
for each player. As usual I write a = (ai; a�i) 2 A when composing action pro�les and

write a < a0 if ai 6 a0i;8i and a 6= a0.
For each i 2 I, let <i denote i�s preferences on A, which I assume to be complete

and transitive. Let �i and �i be its strict and symmetric parts. I say that a0 is a Pareto
improvement over a; a0 �I a; if a0 <i a;8i 2 I and a0 �j a for at least one j. An action
pro�le a is Pareto optimal if there is no a0 2 A that is a Pareto improvement over a: I focus
on Pareto optimality rather than some welfare measure like the sum of utilities since I do not

want to take a stance on cardinal utility and in particular on interpersonal comparisons of

utilities.9 In most applications, it will be plausible to assume that players only care about

the aggregate contributions of all other players, A�i :=
P
j 6=i aj . Formally, (ai; a�i) �i

(ai; a
0
�i) if A�i = A

0
�i. That is, players do not care who makes those contributions as long

as someone makes them. Of course, there may be some situations where players do care

who makes which contributions. At the cost of more cumbersome notation, this could be

accommodated by making preferences depend on the whole vector a�i: However, it would

make the application of the CCM mechanism rather unwieldy in practice as players would

have to provide very detailed and long lists of conditions. I hence restrict my analysis to

the case where players care about other players�cumulative contributions.

In a seminal paper, Dawes (1980) de�nes dilemma games as N -person games with two

actions, defect (here denoted as 0) and cooperate (denoted as 1); Ai = f0; 1g: Further-
more, defect is strictly dominant (and hence the unique Nash equilibrium), (1; a�i) �i
(a0i; a�i);8a�i and a0i 6= 1; and �nally, if all players cooperate, this is better for everyone,
(1; 1; ::::; 1) �I (0; 0; :::; 0).

The generalization I propose is very close to the one used by Peña and Nöldeke (2023),10

except that rather than just having two actions, defect and cooperate, in my setting I allow

cooperation to be gradual, where choosing to �contribute more�corresponds to a larger ai.

For this to make sense, actions spaces in a dilemma game need to be (partially) ordered

such that the following condition is satis�ed.

PosExternality Players�actions (or contributions) exert a weakly positive externality on
all other players i,

(ai; a
0
�i) %i (ai; a�i) if A0�i � A�i:

9This is also the reason why I focus on pure strategies rather than mixed ones.
10Related de�nitions of binary dilemma games are discussed in Kollock (1998) and Nowak (2012). Peña

and Nöldeke (2023) contain a very through discussion of the various de�nitions in the literature.
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This is of course satis�ed in the canonical case of public goods. If others�actions exert

a negative externality, like in the tragedy of the commons, one can simply reverse the sign

of all actions. For example, rather than deciding to pollute, the action would be to avoid

pollution.

In many dilemma games, zero contribution is in fact a dominant strategy as Dawes

(1980) assumes. However, important strategic aspects of dilemma games are preserved if I

assume that there is a Nash equilibrium a0 in which players contribute something positive

(Harstad (2024) calls this the �business-as-usual�outcome). This Nash equilibrium acts as

a threat point if all agreements fail.11 A crucial ingredient of dilemma games is that there

is a Pareto optimal outcome that dominates the Nash equilibrium a0. But I can allow for

players who do not care at all for others�contributions, (ai; a0�i) �i (ai; a�i);8ai; a�i; a0�i.
For simplicity, I assume that these players have one best action pro�le a�i , (a

�
i ; a�i) �i

(ai; a�i), 8a�i; ai 6= a�i and let I� denote the set of these players. In the following I assume
that players in I� always choose their best action pro�le. For them there is thus no room

for improvement, which gives rise to the following de�nition.

De�nition 1 An outcome a0 is a strict* Pareto improvement over a if a0 is a Pareto
improvement over a that is strict for all players i 2 InI�.

Note that if there exists an a0 �InI� a0, then there exists a Pareto optimal a� such that
a� �InI� a0 since A is �nite.

Pareto There exists a (Pareto optimal) outcome a� that is a strict* Pareto improvement
over some pure Nash equilibrium a0:

I can now de�ne the class of dilemma games.

De�nition 2 A normal form game is a dilemma game if it satis�es Conditions PosEx-

ternality and Pareto.

The class of dilemma games describes well the issues I deal with in this paper. It

describes a society that is stuck at a focal or status quo equilibrium a0 but a Pareto

optimal outcome a0 exists that is preferred by all players. The class of games includes

public good games, common pool resource games, the tragedy of the commons, prisoners�

11Recall that a0 is supposed to be status quo point. Thus, it seems plausible to assume that players are
aware of the Nash equilibrium a0 even though they are not assumed to know others�preferences.
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dilemma games but also games with multiple Pareto ranked Nash equilibria (e.g. the stag-

hunt game, bank runs, weakest link games Riedl et al. (2016), or minimum e¤ort games

Van Huyck et al. (1990)) and many other games.

Table 1 shows some simple one-dimensional examples of dilemma games. Apart from

the prisoners�dilemma, the most important examples are public good games. The linear

case has been studied in Oechssler et al. (2022). But more generally, all baseline models

on global public goods discussed in Buchholz and Sandler (2021) and Harstad (2024) �t

into this framework. Another important class are common pool resource games and, if we

ignore consumers�welfare, oligopoly games, like Cournot or Bertrand oligopolies. Tullock

contests Tullock (1980) also count if again one reverses the sign of the actions to satisfy

Condition PosExternality:

Table 1: Examples of one-dimensional dilemma games

Game Description
Prisoners�dilemma Ai = f0; 1g, where ai = 0 is defect and ai = 1 is cooperate,

a0 = (0; 0) and Pareto optimal action pro�le is (1; 1).

Public good games Linear public good game with n � 2 players. Contributions
ai 2 Ai � [0; 1]; MPCR is �i; payo¤ function

ui(a) = 1� ai + �i
nX
j=1

aj ; with
Pn
i=1 �i > 1

a0 = (0; 0; ::::; 0) and Pareto optimal action pro�le is (1; 1; :::; 1).

Common resource game ui(a) = g(ai;
P
i ai); where g is decreasing in second argument,

Cournot oligopoly over�shing, tragedy of the commons, NATO burden-sharing.

Tullock contests ui(ai; aj) =
ari

ari+a
r
j
, r > 0.

Travellers�dilemma Basu (1994)

Games with multiple stag-hunt games, minimum e¤ort game (Van Huyck et al., 1990),
Pareto ranked equilibria

Dilemma games can however also have multiple Pareto ranked equilibria, like the min-
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imum e¤ort game Van Huyck et al. (1990) or (some) stag-hunt games e.g.

stag hare

stag 8; 8 0; 6

hare 6; 0 4; 4

namely those, where players wants the other players to play stag even if they themselves

plan to play hare (this implies that Condition PosExternality is satis�ed). These are stag-

hunt games where cheap-talk has theoretically no value (see Aumann, 1990).12

3 The conditional contribution mechanism

I de�ne the Conditional Contribution Mechanism (CCM) as GCCM := (MCCM ; gCCM ),

whereMCCM describes the mechanism�s message space and gCCM :MCCM 7! A describes

the mechanism�s outcome function. In other words, the mechanism�s outcome is an action

pro�le for the underlying dilemma game with a given Nash equilibrium pro�le a0. A

player�s message consists of two conditional statements that tie their action to others�

actions. Each statements is of the form �I am willing to contribute ai to the public good

if others�contributions are at least A�i�. The set of statements is denoted by Mi. Since

players are allowed to send two conditional statements, the message space in the CCM

is given by MCCM :=
nQ
i=1
MCCM
i , where MCCM

i := Mi � Mi: As a special case, this

allows players to free-ride completely, by stating ((0; A�i); (0; A�i)), or to unconditionally

contribute an action ai; by stating ((ai; 0); (ai; 0)):

For a message pro�le m 2 MCCM , the outcome gCCM (m) of the CCM is then deter-

mined as follows.

1. Let ACCM (m) � A be the set of feasible outcomes for a message pro�le m 2MCCM ,

that is the set of outcomes that is compatible with at least one of the two conditional

statements for each player,

a 2 ACCM (m), 8 i 2 I;9li 2 f1; 2g s.t. ai = alii and A�i � A
li
�i: (1)

12Experiments show that cheap-talk can help to coordinate on the payo¤-dominant equilibrium (Charness,
2000, Clark et al., 2001, Du¤y and Feltovich, 2002) in symmetric stag-hunts. This does not work so well
anymore in asymmetric stag-hunts, though (Agranov, 2024).
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2. If ACCM (m) is not empty, the mechanism will select one outcome a
0 2 ACCM (m)

using some arbitrary probability distribution on ACCM (m) that has full support, i.e.,

chooses each element with positive probability.

3. If ACCM (m) is empty, the outcome of the mechanism is the vector of default actions

a
0
= a0.

4. The mechanisms automatically changes both conditions for each player to agree with

the chosen outcome, ((a0i; A
0
�i); (a

0
i; A

0
�i)): I call this the adjusted message for each

player.

5. The mechanisms supplies all players with the chosen outcome in period t, which is

denotes by g(mt
i;m

t
�i); and with feedback about the adjusted message pro�le m

t.

Steps (4) and (5) are the key innovations and require some discussion. Once a feasible

new action vector a0 is chosen, there is always the risk of backsliding in the following

periods. This is why the mechanism adjusts all messages to ((a0i; A
0
�i); (a

0
i; A

0
�i)) in step

(4) and this is the only feedback players receive in step (5). Given these adjusted messages,

players know they risk dropping back to a0 if they choose messages in the next period that

would lower their contributions. But why should players agree to submit themselves to

such a mechanism (recall that we require voluntary participation)? The reason is that the

adjusted messages do not require them to contribute more than they have already agreed

to in the current period. And even though the new messages establish a default for the

next period, this default is only relevant if players do not change their message. Since

players are always free to change their messages in the next period, the mechanism does

not restrict their possible actions in any way. The only e¤ects the adjusted messages have

is on the beliefs players have about other players�behavior, and, by setting a default, it

works like a nudge.

However, in the next section, I will make the assumption that players use the adjusted

messages as input in their best- or better reply process. This assumption is new and it is

crucial, so it requires some discussion. Why would players assume that other players will

stick to a message even though they know that these messages were possibly adjusted by

the mechanism? The �rst obvious reason is that players have nothing else to base their

beliefs on as the mechanism does not report the original messages chosen by players as

feedback. Furthermore, as argued above, players will never have to contribute more with

the adjusted messages than with their original messages so that it seems reasonable for
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them to accept the adjusted messages as the status quo. Of course, as with any best

response dynamic, what is assumed is that players are somewhat myopic but this is an

assumption for which there is ample experimental evidence (see e.g. Healy, 2006).

4 Dynamic behavior in the CCM

In this section, I analyze the properties of the CCM under dynamic considerations, where

the assumptions on the dynamic behavior follow closely Oechssler et al. (2022).13 In the

dynamic model, players play the same CCM game recurrently over several periods in �xed

groups. I follow the literature (in particular, Cabrales and Serrano, 2011) and assume that

players are myopic and treat the adjusted messages of the other players from the previous

period, as reported back by the mechanism in step 4, as a prediction of the other players�

messages in the next period.

There is evidence (see e.g. Healy, 2006) that players�behavior in recurrent public good

mechanisms can be well described using best response dynamics.14 In my case, given that

the CCM mechanism reacts in a very discontinuous fashion,15 I �nd it most plausible if

players react only to the most recent information from the previous period.16

Given the evidence that players contribute in public good games even when it is a

dominant strategy not to (see e.g. Ledyard (1995)) and thus do seem to not fully exploit

their strategic advantages, I allow players to simply choose a better response (abbreviated

as BR). Formally, given the status quo outcome g(mt
i;m

t
�i) and the adjusted message

pro�le mt, a message mt+1
i is a better response for player i if player i weakly prefers all

possible new outcomes g(mt+1
i ;mt

�i) to the status quo,

g(mt+1
i ;mt

�i)) �i g(mt
i;m

t
�i): (2)

De�nition 3 In Better Response Dynamics (BRD) each player i switches in period t+ 1
to a message mt+1

i that is a better response. If several better responses exist, all of them

13Since the class of games considered here is much broader and the mechanisms di¤er, the results of
Oechssler et al. (2002) do not apply, of course.
14There is also evidence from strategically similar Cournot games that many subjects are well described

by best response behavior (see e.g. Huck et al. 1999).
15Since the message space is �nite, the word �discontinuous� is not meant literally here. Instead it

describes the fact that a small change in one agent�s message can change the outcome from full contribution
to zero contribution or the other way round.
16Of course, some agents will be more sophisticated and forward looking. I try to account for that by

introducing the concept of unexploitability below.
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are chosen according to some arbitrary probability distribution that has full support.

De�nition 4 Given an outcome at = g(mt
i;m

t
�i), a message m

t+1
i is called exploitable

at at if there is any mt+1
�i 2 M�i such that there exists a possible new feasible outcome

g(mt+1
i ;mt+1

�i ) = at+1 2 ACCM (mt+1); with at+1 �i at. A message mt+1
i is called unex-

ploitable at at if it is not exploitable.

In words, a message of player i is unexploitable at at if there is no chance that after

any deviation of other players, player i is worse o¤ than in the previous period. Note that

all possible message pro�les m�i of other players are considered. One could argue, since

I assume a BRD model, that I should only consider pro�les of better responses of other

players at this point. However, since I allow for the general case, in which players have

no information on the preferences of other players, players cannot tell whether a certain

message of another player is a better response. Therefore, from a player�s perspective it

seems prudent to account for all possible choices.

When I combine the BRD with the requirement that messages be unexploitable, I get

the following.

De�nition 5 An unexploitable better response dynamic (UBRD) is a BRD dynamic with
the restriction that players only choose unexploitable messages.

Unexploitable better responses always exist since the status quo message (after adjust-

ment through the mechanism) is a better response and it is unexploitable. It is a better

response because it yields the same outcome if other players do not adjust their messages.

And it is unexploitable because either other players weakly increase A0�i; which would

weakly increase i�s payo¤, or they decrease A0�i in at least one dimension, in which case

there would be no feasible outcome and the process would revert to a0.17

The UBRD de�nes a Markov chain on the (�nite) state space MCCM : By standard re-

sults (see e.g. Karlin and Taylor, 1975, p.64) states (i.e. message pro�les) can be partitioned

into transient pro�les and recurrent pro�les.

De�nition 6 A recurrent class of UBRD is a set of message pro�les, which, if ever reached
by the dynamics, is never left and which contains no smaller set with the same property.

17Recall that for a message to be exploitable it must result in a feasible outcome for the message pro�le.

11



Lemma 1 If the UBRD has reached an action pro�le at that is a strict* Pareto improve-
ment over a0, then each further step of the UBRD will be a weak Pareto improvement.

Proof. Suppose in period t the mechanism has chosen a new action pro�le at that is a

strict* Pareto improvement over a0. Then it must adjust the conditions to ((ati; A
t
�i); (a

t
i; A

t
�i))

for each player. I claim that players will choose the next message mt+1
i such that

(A) the status quo at remains feasible,

(B) and no at+1 such that at+1 �i at, for any i, becomes feasible (including a0).

If claims (A) and (B) hold, the mechanism can choose only action pro�les at+1 in period

t+ 1 that are weakly better than at for all players.

To prove claim (A), suppose at became infeasible. This can only happen if at least

one player i 2 InI� switches to messages (a1i ; A1�i); (a2i ; A2�i) such that both conditional
statements in equation (1) are violated. That is, either alii 6= ati or :

�
Ali�i � At�i

�
for

both statements li. A unilateral deviation by i to some message with a
li
i � ati; a

li
i 6= ati; and

Ali�i � At�i, would not be a better response as player i would be the only player contributing
more. A unilateral deviation by i to some some message with alii ; which would contribute

less in at least one dimension, i.e. :
�
alii � ati

�
or with some Ali�i such that :

�
Ali�i � At�i

�
;

would imply that ACCM (m) were empty and a0 would be chosen by the mechanism. But

this would not be a better response for the deviating player since at was already a strict*

Pareto improvement over a0.

To prove claim (B), suppose that some at+1 became feasible such that at+1 �i at for
player i. However, note that player i can always prevent a move to at+1 by simply not

changing the conditions ((ati; A
t
�i); (a

t
i; A

t
�i)). Thus any change by player i that would

make at+1 feasible would be exploitable. �
I am now ready to state the main theorem of my paper.

Theorem 1 Any outcome of a recurrent class of the CCM under UBRD is Pareto optimal.

Proof. Suppose a is an outcome of a recurrent class but not Pareto optimal. I will show
a contradiction by showing that from a there is a path with strictly positive probability to

some a0 that is a strict* Pareto improvement over a0: I will show that the UBRD can move

to a0 with positive probability. Furthermore, from a0 the UBRD process cannot return to

a, which proves the desired contradiction that a cannot be an outcome of a recurrent class.
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Case 1) Suppose that a is already a strict* Pareto improvement over a0. Given that

a was chosen by the mechanism, the current default conditions are ((ai; A�i); (ai; A�i)).

Since a is not Pareto optimal, there exists some a0 that is a Pareto improvement over a.

Consider the following pair of messages,

�
(ai; A�i); (a

0
i; A

0
�i)
�
;

where again A0�i =
P
j 6=i a

0
j . I claim that those messages are unexploitable best replies

for all i 2 InI�. They are best replies because the outcome will not change if one player
deviates unilaterally. They are unexploitable because the only new feasible outcome that

can be chosen is weakly preferred by all players. To see this, note that if player i has to

contribute a0i other player need to contribute at least A
0
�i. If others contribute exactly A

0
�i,

then i is weakly better o¤ since a0 is a Pareto improvement over a. If others contribute

more than A0�i, this is even better for i due to Condition PosExternality in the de�nition

of a dilemma game.

Thus, these messages are messages are unexploitable best replies and are hence chosen

with strictly positive probability and, again with strictly positive probability, the mecha-

nism will select a0 as the new outcome. Given that a0 is a Pareto improvement over a and

therefore a strict* Pareto improvement over a0, by the Lemma, the UBRD cannot return

to a.

Case 2) If a is not a strict* Pareto improvement over a0, there are some players i 2 InI�,
for which violating the binding condition is an unexploitable BR, which would return the

process to a0. By Condition Pareto in the de�nition of a dilemma game, there exists an a0

that is a strict* Pareto improvement over a0. With positive probability the process would

move to a0 and I can continue as in Case 1. �
The UBRD process may be rather slow in some games. Two ideas may speed it up.

First, if the actions space Ai is one-dimensional, Ai � R+, then the CCM mechanism can

be modi�ed by picking in Step 2 the unique action pro�le a 2 ACCM (m) with the largest
sum of contributions

P
i ai.

18 This should speed up the convergence to a Pareto optimal

action pro�le considerably. Second, if the action pro�le is multi-dimensional, players could

be asked to indicate which of their two conditions they would prefer if implemented. The

mechanism then could implement those pro�les in ACCM (m) with higher probability that

are preferred by a majority of players. This would not change the recurrent class of the

18The action pro�le is unique as shown in Oechssler et al. (2022, equation 3)
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CCM but may speed up convergence.

5 Conclusion

This study has introduced and examined the conditional contribution mechanism (CCM)

designed to address a wide class of dilemma games. The mechanism relies on binding

unilateral commitments that are conditional on others�contributions, thereby eliminating

the need for a central authority to enforce multilateral agreements. The main result is that

under unexploitable better response dynamics, the CCM converges to recurrent states that

are necessarily Pareto optimal.

By extending the framework beyond binary action spaces or linear public good settings

to multidimensional action spaces, the analysis substantially broadens the applicability of

conditional contribution mechanisms. The results thus provide a theoretical foundation for

self-enforcing agreements in contexts as diverse as international climate negotiations, com-

mon pool resource management, and coordination problems with multiple Pareto-ranked

equilibria. Crucially, the mechanism remains e¤ective under incomplete information and

heterogeneous preferences, highlighting its robustness in realistic strategic environments.

While the convergence process may in some cases be slow, the proposed re�nements

suggest avenues for accelerating adjustment without undermining stability. Future re-

search could further investigate such re�nements, explore the empirical performance of

the mechanism in larger and more heterogeneous populations, and examine its interaction

with alternative institutional arrangements. Overall, the �ndings underscore the potential

of conditional contribution mechanisms as a theoretically rigorous and practically viable

approach to overcoming persistent ine¢ ciencies in social dilemma situations.
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