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Abstract
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1 Introduction

In this short paper I suggest a mechanism designed to solve dilemma games, games which
are ubiquitous in economics, politics, international relations, and related fields. Currently,
probably the most prominent example are international climate treaties that aim to limit
COy growth, a task where the difficulties are plentiful. Countries may not agree on the
urgency of the issue and they may have different actions they can choose from to mitigate
emissions. But the biggest difficulty lies in the absence of a central authority that can
enforce agreements.

Thus, the only hope for stable international treaties is when they are self-enforcing.
The conditional contribution mechanism proposed here is designed to achieve this. Each
player promises to contribute certain (vectors of) actions under the condition that other
players’ contributions meet the thresholds set by the player. What is required is that each
player can make internal and unilateral commitments (e.g. through national laws).! Given
these unilateral commitments, if a government of one country decides to deviate from its
promise, it knows full well that the mechanism would trigger automatic actions by all other
countries making the deviation unattractive.?

The conditional contribution mechanism (CCM) suggested here is designed to work
under voluntary participation and incomplete information (by players and the mechanism
designer) about other players’ preferences. Both requirements seem desirable for many
applications. For example, in the context of international climate treaties, no country has
complete information about other countries’ costs or their willingness to pay for various
mitigation measures.

The mechanism is intended for the repeated play of dilemma games and works as
follows. In each period, all players submit two statements of the form “We will contribute
action vector a; if other players contribute at least A_; in total.” The mechanism then
picks one action profile that is compatible with at least one statement for all players. If no
such feasible action profile exists, it will pick a default action a®, which is the “business-

as-usual” (Harstad, 2024) Pareto dominated Nash equilibrium of the dilemma game. The

! As Heitzig (2019) points out, this type of binding mutually conditional commitments is known from
an important current example: the US National Popular Vote Interstate Compact (NPVIC) (Bennett and
Bennett, 2001; Muller, 2007) that aims at repairing the deficiencies of the US electoral college and electing
the winner of the national popular vote for president of the US.

20n a smaller scale, refundable deposits, contractual arrangements, or even crypto smart contracts can
achieve unilateral commitments.



mechanism will then adjust all statements so that they agree with the chosen action profile
(see below for details) and announce this as feedback to all players.

The reason why the mechanism requires two conditional statements from each player is
that this makes it possible for players to increase their conditional commitments without
risking the status quo. With the first statements they can fix the status quo and with the
second they can suggest better alternatives, which - when feasible for all - would make
everyone better off. With just one conditional statement, the mechanism could get stuck
at contribution levels, which — while being better than a® — are still not Pareto optimal.

Simplified versions of the suggested conditional contribution mechanism have been stud-
ied theoretically by Reischmann and Oechssler (2018), Heitzig (2019), and Oechssler et al.
(2022).3 An interesting alternative are contractive mechanisms studied by Healy and Math-
evet (2012). They have desirable theoretical properties but may be too complex is some
situations. There is of course also a very extensive literature on mechanisms for public
goods (Vickrey, 1961, Clarke, 1971, Groves and Ledyard, 1977) and conditional contribu-
tions (Guttman, 1978, 1986).* Experimentally, the CCM has been studied by Reischmann
and Oechssler (2018), Oechssler et al. (2022), Giirdal et al. (2024), and Casari et al. (2025),
where the last show that the mechanism works for groups as large as 15 players.” That
it actually also works in the field has been shown (albeit at a small scale) in a Ukraine
fund raiser, where we used a slightly different version under the name “You contribution
squared” and raised more than €60.000.°

To generalize those earlier contributions, I allow for a much broader class of dilemma
games. Most of the literature is concerned with (linear) public good games or multi-person
prisoners’ dilemmas. A seminal paper by Dawes (1980) defines dilemma games as N-
person games with two actions, defect and cooperate, where defect is strictly dominant
and if all players cooperate, this is better for everyone. To account for the complicated
action spaces e.g. in climate agreements, I allow for multidimensional action spaces A; C
Rﬁ. For example, in an international climate policy context, a;; might be country i’s

emissions mitigation, a; 2 and a; 3 might be its investments into a climate adaptation fund

3Somewhat overoptimistically, we called the last paper the “general case” because it generalized the
binary case. But it was not general at all since it considered a linear public good game.

*See e.g. Oechssler et al. (2022) for a more systematic literature review.

"MacKay et al. (2015) and Schmidt and Ockenfels (2021) study related mechanisms that are particularly
geared towards reducing CO2 emissions through carbon pricing.

SThis fundraiser was organized by Georg Weizsiicker and the current author. The idea was that par-
ticipants promise to donate X€ if at least X people would also promise to donate at least X€. See
https://yourcontributionsquared.eu/en/ for details.



and research into renewable energy, and a; 4 a binary variable indicating its agreement to
ban deforestation. Obviously, it makes sense to allow for any number of actions rather than
just two.” The definition of dilemma games I propose is close to the one adopted by Pefia
and Noldeke (2023) but is generalized to the case of more than two actions. Accordingly,
a game is a dilemma game if (1) there is a Pareto dominated Nash equilibrium and (2)
players’ actions (or contributions) exert a weakly positive externality on all other players.®
This allows for all the usual dilemmas, like public good games, tragedy of the commons,
and multi-person prisoners’ dilemmas. But it also allows for situations where players are
intrinsically motivated to contribute some positive (but insufficient) amount on their own.
Finally, it allows for stag-hunt coordination games with Pareto dominated equilibria.

The CCM mechanism studied in this paper is particularly suitable when the dilemma
game is (finitely) repeated like the different rounds of climate conferences. In the one-shot
play of the CCM, there are many Nash equilibria, including the undesirable one, in which
the dominated default action is played every time. In the repeated play of the mechanism,
players have the chance to learn. I assume that they play better responses to the previous
round. But they are also somewhat forward looking and anticipate that other players may
change their strategies too. Thus, among the better responses, they choose better responses
that are unexploitable by other players, in the sense that feasible outcomes that are worse
than the status quo are excluded.

The main result of the paper is that the resulting unexploitable better response process
will converge to Pareto optimal states. This holds even when I allow for players who do
not care at all for the contributions of others and if other players do not know about their
existence. Thus, despite the fact that no player knows how much other players care about

contributions, the process will eventually reach a Pareto optimal state.

2 Dilemma games

Let I be a finite set of N > 2 players playing a normal form game. For each i € I, let

A; C Ri be a finite, non-empty set of possible actions (or contributions), with the vector

"In a strict literal sense, a dilemma refers to only two actions but it is not uncommon to be used in
situations with more than two actions. See e.g. the Oxford English Dictionary’s (2025) definition: “A
choice between two (or, loosely, several) alternatives, which are or appear equally unfavourable.”

8Liebrand (1983, p. 135) defines social dilemmas as situations in which, “by the very act of choosing
a strategy with negative externalities, the ultimate outcome can be called deficient.” Note that one can
always reverse the sign of the action space to change positive into negative externalities.



of zero contributions included, 0 € A;. An action profile a = (a;);er € A denotes an action
for each player. As usual I write a = (a;,a—;) € A when composing action profiles and
write a < a' if a; < af, Vi and a # d'.

For each i € I, let >=; denote i’s preferences on A, which I assume to be complete
and transitive. Let »; and ~; be its strict and symmetric parts. I say that o’ is a Pareto
improvement over a, a’ >; a, if @’ ’=; a,Vi € I and @’ >; a for at least one j. An action
profile a is Pareto optimal if there is no a’ € A that is a Pareto improvement over a. I focus
on Pareto optimality rather than some welfare measure like the sum of utilities since I do not
want to take a stance on cardinal utility and in particular on interpersonal comparisons of
utilities.’ In most applications, it will be plausible to assume that players only care about
the aggregate contributions of all other players, A_; := > i - Formally, (a;,a—;) ~;
(a;,a’;)if A_; = A’ ,. That is, players do not care who makes those contributions as long
as someone makes them. Of course, there may be some situations where players do care
who makes which contributions. At the cost of more cumbersome notation, this could be
accommodated by making preferences depend on the whole vector a_;. However, it would
make the application of the CCM mechanism rather unwieldy in practice as players would
have to provide very detailed and long lists of conditions. I hence restrict my analysis to
the case where players care about other players’ cumulative contributions.

In a seminal paper, Dawes (1980) defines dilemma games as N-person games with two
actions, defect (here denoted as 0) and cooperate (denoted as 1), A; = {0,1}. Further-
more, defect is strictly dominant (and hence the unique Nash equilibrium), (1,a_;) >;
(a},a_;),Ya_; and a; # 1, and finally, if all players cooperate, this is better for everyone,
(1,1,....,1) =7 (0,0,...,0).

The generalization I propose is very close to the one used by Pefia and Noldeke (2023),'°
except that rather than just having two actions, defect and cooperate, in my setting I allow
cooperation to be gradual, where choosing to “contribute more” corresponds to a larger a;.
For this to make sense, actions spaces in a dilemma game need to be (partially) ordered

such that the following condition is satisfied.

PosExternality Players’ actions (or contributions) exert a weakly positive externality on
all other players 1,
(a;,a" ;) =i (aj,a_;) if A", > A,

9This is also the reason why I focus on pure strategies rather than mixed ones.
""Related definitions of binary dilemma games are discussed in Kollock (1998) and Nowak (2012). Pefia
and Noldeke (2023) contain a very through discussion of the various definitions in the literature.



This is of course satisfied in the canonical case of public goods. If others’ actions exert
a negative externality, like in the tragedy of the commons, one can simply reverse the sign
of all actions. For example, rather than deciding to pollute, the action would be to avoid
pollution.

In many dilemma games, zero contribution is in fact a dominant strategy as Dawes
(1980) assumes. However, important strategic aspects of dilemma games are preserved if 1

assume that there is a Nash equilibrium a

in which players contribute something positive
(Harstad (2024) calls this the “business-as-usual” outcome). This Nash equilibrium acts as
a threat point if all agreements fail.'' A crucial ingredient of dilemma games is that there

is a Pareto optimal outcome that dominates the Nash equilibrium a°. But I can allow for

/

players who do not care at all for others’ contributions, (a;,a’ ;) ~; (ai,a—;),Va;,a—;,a’;.

For simplicity, I assume that these players have one best action profile a}, (a},a—;) >;
(aiya—;), Ya_i,a; # af and let I* denote the set of these players. In the following I assume
that players in I* always choose their best action profile. For them there is thus no room

for improvement, which gives rise to the following definition.

0. . . * . . .
Definition 1 An outcome a' is a strict Pareto improvement over a if a' is a Pareto

improvement over a that is strict for all players i € I\I*.

Note that if there exists an a’ = I\I* a®, then there exists a Pareto optimal a* such that

a* =pre a’ since A is finite.

Pareto There exists a (Pareto optimal) outcome a* that is a strict” Pareto improvement

over some pure Nash equilibrium a'.

I can now define the class of dilemma games.

Definition 2 A normal form game is a dilemma game if it satisfies Conditions PosFEzx-

ternality and Pareto.

The class of dilemma games describes well the issues I deal with in this paper. It
describes a society that is stuck at a focal or status quo equilibrium a® but a Pareto
optimal outcome a’ exists that is preferred by all players. The class of games includes

public good games, common pool resource games, the tragedy of the commons, prisoners’

"Recall that a® is supposed to be status quo point. Thus, it seems plausible to assume that players are
aware of the Nash equilibrium a® even though they are not assumed to know others’ preferences.



dilemma games but also games with multiple Pareto ranked Nash equilibria (e.g. the stag-

hunt game, bank runs, weakest link games Riedl et al. (2016), or minimum effort games

Van Huyck et al. (1990)) and many other games.

Table 1 shows some simple one-dimensional examples of dilemma games. Apart from

the prisoners’ dilemma, the most important examples are public good games. The linear

case has been studied in Oechssler et al. (2022). But more generally, all baseline models
on global public goods discussed in Buchholz and Sandler (2021) and Harstad (2024) fit

into this framework. Another important class are common pool resource games and, if we

ignore consumers’ welfare, oligopoly games, like Cournot or Bertrand oligopolies. Tullock

contests Tullock (1980) also count if again one reverses the sign of the actions to satisfy

Condition PosExternality.

Table 1: Examples of one-dimensional dilemma games

Game

Description

Prisoners’ dilemma

Public good games

Common resource game
Cournot oligopoly

Tullock contests

Travellers’ dilemma

Games with multiple
Pareto ranked equilibria

A; ={0,1}, where a; = 0 is defect and a; = 1 is cooperate,
a® = (0,0) and Pareto optimal action profile is (1, 1).

Linear public good game with n > 2 players. Contributions

a; € A; C [0,1], MPSR is 0;, payoff function

ul(a) =1—a;+ GiZaj, with Z?:l 0; >1
j=1
a® = (0,0, ....,0) and Pareto optimal action profile is (1,1, ...,1).

ui(a) = g(a;, Y, a;), where g is decreasing in second argument,
overfishing, tragedy of the commons, NATO burden-sharing.

ks

a’
ui(ai, aj) = 7{1#(1;, r > 0.

Basu (1994)

stag-hunt games, minimum effort game (Van Huyck et al., 1990),

Dilemma games can however also have multiple Pareto ranked equilibria, like the min-



imum effort game Van Huyck et al. (1990) or (some) stag-hunt games e.g.

stag | hare
stag | 8,8 | 0,6
hare | 6,0 | 4,4

namely those, where players wants the other players to play stag even if they themselves
plan to play hare (this implies that Condition PosExternality is satisfied). These are stag-

hunt games where cheap-talk has theoretically no value (see Aumann, 1990).'2

3 The conditional contribution mechanism

I define the Conditional Contribution Mechanism (CCM) as GEOM .= (MCCM GCOM),

COM . pyCCM  , A describes

where M¢“M describes the mechanism’s message space and g
the mechanism’s outcome function. In other words, the mechanism’s outcome is an action
profile for the underlying dilemma game with a given Nash equilibrium profile a®. A
player’s message consists of two conditional statements that tie their action to others’
actions. Each statements is of the form “I am willing to contribute a; to the public good
if others’ contributions are at least A_;”. The set of statements is denoted by M;. Since
players are allowed to send two conditional statements, the message space in the CCM

n

is given by MY“M .= T[] MZCCM, where MZCCM ;= M; x M;. As a special case, this
i=1

allows players to free-ride completely, by stating ((0, A_;), (0, A_;)), or to unconditionally

contribute an action a;, by stating ((a;,0), (a;,0)).
For a message profile m € MY“M | the outcome g¢“M(m) of the CCM is then deter-

mined as follows.

1. Let AY“M(m) C A be the set of feasible outcomes for a message profile m € MEEM

that is the set of outcomes that is compatible with at least one of the two conditional

statements for each player,

a€ A%M(m) & Vie L3l € {1,2} st.a; = aj and Ay > A", (1)

2Experiments show that cheap-talk can help to coordinate on the payoff-dominant equilibrium (Charness,
2000, Clark et al., 2001, Duffy and Feltovich, 2002) in symmetric stag-hunts. This does not work so well
anymore in asymmetric stag-hunts, though (Agranov, 2024).



2. If A°“M (1) is not empty, the mechanism will select one outcome a € AS“M (m)
using some arbitrary probability distribution on A“M (m) that has full support, i.e.,

chooses each element with positive probability.

3. If ACM () is empty, the outcome of the mechanism is the vector of default actions
0

a =ad.
4. The mechanisms automatically changes both conditions for each player to agree with
the chosen outcome, ((a}, A" ), (a}, A" ;)). I call this the adjusted message for each

player.

5. The mechanisms supplies all players with the chosen outcome in period ¢, which is

denotes by g(m},m' ), and with feedback about the adjusted message profile m’.

Steps (4) and (5) are the key innovations and require some discussion. Once a feasible
new action vector a’ is chosen, there is always the risk of backsliding in the following
periods. This is why the mechanism adjusts all messages to ((a}, A" ), (a;, A" ,)) in step
(4) and this is the only feedback players receive in step (5). Given these adjusted messages,
players know they risk dropping back to a if they choose messages in the next period that
would lower their contributions. But why should players agree to submit themselves to
such a mechanism (recall that we require voluntary participation)? The reason is that the
adjusted messages do not require them to contribute more than they have already agreed
to in the current period. And even though the new messages establish a default for the
next period, this default is only relevant if players do not change their message. Since
players are always free to change their messages in the next period, the mechanism does
not restrict their possible actions in any way. The only effects the adjusted messages have
is on the beliefs players have about other players’ behavior, and, by setting a default, it
works like a nudge.

However, in the next section, I will make the assumption that players use the adjusted
messages as input in their best- or better reply process. This assumption is new and it is
crucial, so it requires some discussion. Why would players assume that other players will
stick to a message even though they know that these messages were possibly adjusted by
the mechanism? The first obvious reason is that players have nothing else to base their
beliefs on as the mechanism does not report the original messages chosen by players as
feedback. Furthermore, as argued above, players will never have to contribute more with

the adjusted messages than with their original messages so that it seems reasonable for



them to accept the adjusted messages as the status quo. Of course, as with any best
response dynamic, what is assumed is that players are somewhat myopic but this is an

assumption for which there is ample experimental evidence (see e.g. Healy, 2006).

4 Dynamic behavior in the CCM

In this section, I analyze the properties of the CCM under dynamic considerations, where
the assumptions on the dynamic behavior follow closely Oechssler et al. (2022).!3 In the
dynamic model, players play the same CCM game recurrently over several periods in fixed
groups. I follow the literature (in particular, Cabrales and Serrano, 2011) and assume that
players are myopic and treat the adjusted messages of the other players from the previous
period, as reported back by the mechanism in step 4, as a prediction of the other players’
messages in the next period.

There is evidence (see e.g. Healy, 2006) that players’ behavior in recurrent public good
mechanisms can be well described using best response dynamics.'* In my case, given that
the CCM mechanism reacts in a very discontinuous fashion,'® I find it most plausible if
players react only to the most recent information from the previous period.!

Given the evidence that players contribute in public good games even when it is a
dominant strategy not to (see e.g. Ledyard (1995)) and thus do seem to not fully exploit
their strategic advantages, I allow players to simply choose a better response (abbreviated

as BR). Formally, given the status quo outcome g(m},m' ) and the adjusted message

ﬁ“ is a better response for player i if player ¢ weakly prefers all

t+1 ¢
i T

profile m!, a message m
possible new outcomes g(m ) to the status quo,

g(mi ™ mby)) =i g(mf,mL,). (2)

K3 -1 (2 —1

Definition 3 In Better Response Dynamics (BRD) each player i switches in period t + 1

to a message mﬁ“ that is a better response. If several better responses exist, all of them

3Since the class of games considered here is much broader and the mechanisms differ, the results of
Oechssler et al. (2002) do not apply, of course.

4 There is also evidence from strategically similar Cournot games that many subjects are well described
by best response behavior (see e.g. Huck et al. 1999).

Since the message space is finite, the word “discontinuous” is not meant literally here. Instead it
describes the fact that a small change in one agent’s message can change the outcome from full contribution
to zero contribution or the other way round.

160f course, some agents will be more sophisticated and forward looking. I try to account for that by
introducing the concept of unexploitability below.

10



are chosen according to some arbitrary probability distribution that has full support.

Definition 4 Given an outcome a' = g(m!,m' ), a message mﬁ“

at at if there is any mt_tl

g(m?“,mtjl) = ottt € ACOM (1) with o'l <; at. A message mt™t is called unex-

i

s called exploitable

€ M_; such that there exists a possible new feasible outcome

ploitable at a® if it is not exploitable.

In words, a message of player 7 is unexploitable at a' if there is no chance that after
any deviation of other players, player ¢ is worse off than in the previous period. Note that
all possible message profiles m_; of other players are considered. One could argue, since
I assume a BRD model, that I should only consider profiles of better responses of other
players at this point. However, since I allow for the general case, in which players have
no information on the preferences of other players, players cannot tell whether a certain
message of another player is a better response. Therefore, from a player’s perspective it
seems prudent to account for all possible choices.

When I combine the BRD with the requirement that messages be unexploitable, I get
the following.

Definition 5 An unezploitable better response dynamic (UBRD) is a BRD dynamic with

the restriction that players only choose unexploitable messages.

Unexploitable better responses always exist since the status quo message (after adjust-
ment through the mechanism) is a better response and it is unexploitable. It is a better

response because it yields the same outcome if other players do not adjust their messages.

/

And it is unexploitable because either other players weakly increase A’ ,, which would

in at least one dimension, in which case
there would be no feasible outcome and the process would revert to a®.1”
The UBRD defines a Markov chain on the (finite) state space M“M. By standard re-

sults (see e.g. Karlin and Taylor, 1975, p.64) states (i.e. message profiles) can be partitioned

weakly increase i’s payoff, or they decrease A’

into transient profiles and recurrent profiles.

Definition 6 A recurrent class of UBRD is a set of message profiles, which, if ever reached

by the dynamics, is never left and which contains no smaller set with the same property.

!"Recall that for a message to be exploitable it must result in a feasible outcome for the message profile.

11



Lemma 1 If the UBRD has reached an action profile a' that is a strict* Pareto improve-

ment over a®, then each further step of the UBRD will be a weak Pareto improvement.

Proof. Suppose in period ¢ the mechanism has chosen a new action profile a’ that is a
strict* Pareto improvement over a®. Then it must adjust the conditions to ((a, A% ,), (a, A%,))

for each player. I claim that players will choose the next message mﬁ“ such that

(A) the status quo a’ remains feasible,
(B) and no a'*™! such that a'™! <; a!, for any i, becomes feasible (including a°).

If claims (A) and (B) hold, the mechanism can choose only action profiles a’*! in period
t + 1 that are weakly better than a’ for all players.

To prove claim (A), suppose a' became infeasible. This can only happen if at least
one player i € I\I* switches to messages (a}, A,), (a?, A2,) such that both conditional
statements in equation (1) are violated. That is, either aff # al or — (Aljl < At_l> for
both statements /;. A unilateral deviation by 7 to some message with ai"’ > al, ai-i # al, and
Alji < A! ;, would not be a better response as player i would be the only player contributing
more. A unilateral deviation by i to some some message with aéi, which would contribute
less in at least one dimension, i.e. — (aéi > afg) or with some Alji such that — (Aljl < At_z> ,
would imply that A““M (m) were empty and a® would be chosen by the mechanism. But

t

this would not be a better response for the deviating player since a® was already a strict™*

Pareto improvement over a°.
To prove claim (B), suppose that some a‘*! became feasible such that a’*! <; a’ for

t+1 by simply not

player ¢. However, note that player ¢ can always prevent a move to a
changing the conditions ((a!, A" ), (af, A*,)). Thus any change by player i that would
make a'T! feasible would be exploitable. (J

I am now ready to state the main theorem of my paper.
Theorem 1 Any outcome of a recurrent class of the CCM under UBRD is Pareto optimal.

Proof. Suppose a is an outcome of a recurrent class but not Pareto optimal. I will show
a contradiction by showing that from a there is a path with strictly positive probability to
some a’ that is a strict* Pareto improvement over a°. I will show that the UBRD can move
to a’ with positive probability. Furthermore, from a’ the UBRD process cannot return to

a, which proves the desired contradiction that a cannot be an outcome of a recurrent class.

12



Case 1) Suppose that a is already a strict* Pareto improvement over a®. Given that

a was chosen by the mechanism, the current default conditions are ((a;, A_;), (ai, A—;)).
Since a is not Pareto optimal, there exists some a’ that is a Pareto improvement over a.

Consider the following pair of messages,

((ai7 A*i)a (a;7 A/—z)) )

/
7z
for all © € I\I*. They are best replies because the outcome will not change if one player

where again A’ ; = Zj 20 1 claim that those messages are unexploitable best replies
deviates unilaterally. They are unexploitable because the only new feasible outcome that
can be chosen is weakly preferred by all players. To see this, note that if player ¢ has to
contribute a; other player need to contribute at least A’ ;. If others contribute exactly A’ ,,
then 4 is weakly better off since a’ is a Pareto improvement over a. If others contribute
more than A’ ;» this is even better for 7 due to Condition PosExternality in the definition
of a dilemma game.

Thus, these messages are messages are unexploitable best replies and are hence chosen
with strictly positive probability and, again with strictly positive probability, the mecha-
nism will select a’ as the new outcome. Given that a’ is a Pareto improvement over a and
therefore a strict™ Pareto improvement over a’, by the Lemma, the UBRD cannot return
to a.

Case 2) If a is not a strict* Pareto improvement over a’, there are some players i € I\I*,
for which violating the binding condition is an unexploitable BR, which would return the
process to a®. By Condition Pareto in the definition of a dilemma game, there exists an a’
that is a strict* Pareto improvement over a®. With positive probability the process would
move to @’ and I can continue as in Case 1. [

The UBRD process may be rather slow in some games. Two ideas may speed it up.
First, if the actions space A; is one-dimensional, A; C R, then the CCM mechanism can
be modified by picking in Step 2 the unique action profile a € AY“M (m) with the largest
sum of contributions ), a;.'® This should speed up the convergence to a Pareto optimal
action profile considerably. Second, if the action profile is multi-dimensional, players could
be asked to indicate which of their two conditions they would prefer if implemented. The
mechanism then could implement those profiles in ACCM (m) with higher probability that

are preferred by a majority of players. This would not change the recurrent class of the

18 The action profile is unique as shown in Oechssler et al. (2022, equation 3)

13



CCM but may speed up convergence.

5 Conclusion

This study has introduced and examined the conditional contribution mechanism (CCM)
designed to address a wide class of dilemma games. The mechanism relies on binding
unilateral commitments that are conditional on others’ contributions, thereby eliminating
the need for a central authority to enforce multilateral agreements. The main result is that
under unexploitable better response dynamics, the CCM converges to recurrent states that
are necessarily Pareto optimal.

By extending the framework beyond binary action spaces or linear public good settings
to multidimensional action spaces, the analysis substantially broadens the applicability of
conditional contribution mechanisms. The results thus provide a theoretical foundation for
self-enforcing agreements in contexts as diverse as international climate negotiations, com-
mon pool resource management, and coordination problems with multiple Pareto-ranked
equilibria. Crucially, the mechanism remains effective under incomplete information and
heterogeneous preferences, highlighting its robustness in realistic strategic environments.

While the convergence process may in some cases be slow, the proposed refinements
suggest avenues for accelerating adjustment without undermining stability. Future re-
search could further investigate such refinements, explore the empirical performance of
the mechanism in larger and more heterogeneous populations, and examine its interaction
with alternative institutional arrangements. Overall, the findings underscore the potential
of conditional contribution mechanisms as a theoretically rigorous and practically viable

approach to overcoming persistent inefficiencies in social dilemma situations.
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